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OPTIMAL CONTROL OF SYSTEMS WITH UNCERTAINTY

I. Introduction

In attempting to design a controller which optimally steers a system

to a prescribed target, two basic problems arise. The first is to determine

if there exists a control which steers the system to the target. Since

o

we are investigating systems with disturbances, the control must steer
the system to the target for all possible disturbances. If at least

one such control exists, the second problem i{s to find the optimal one.
The research being conducted under AFOSR Grant 76-2923 i{s concerned with
obtaining techniques for solving these problems. It is believed that

} these techniques will aid in the design of controllers for uncertain

systems. In our approach, the only assumption about the disturbance
is that it belongs to a compact set. Thus, the application of this
research does not require any assumption about the statistics of the
disturbance and will offer an alternative design scheme to those schemes

which involve stochastic processes.

II. Results Obtained

Before considering the difficult problem of controlling a system
with disturbances to a geaneral target, it was deemed necessary to first
consider some simpler problems. Most controllability results assume
there are no constraints on the magnitude of the controls. This is
usually unrealistic, since physical limitations do place constraints on
the instantaneous control values.

The first problem considered was that of steering a system without
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disturbances to the origin when the magnitude of the control {s constrained.

A technique was developed for determining if a system can be steered to
the origin and also a method for obtaining such a control when it exists.
These results have been submitted to the S.I.A.M. Journal on Control and
Optimization and are contained in Appendix A.

Next, the controllability problem was generalized by allowing for
targets other than the origin. Similar results were obtained for this
problem. The specific details are reported in Appendix B and a paper

has been submitted to IEEE Transactions on Automatic Control. These

results were also discussed in two talks at a conference in Montreal.
The summaries of these talks, which appeared in the conference proceedings,
are included in Appendix C,

In some situations, the target {s a linear combination of the state

variables (affine target). The results discussed in Appendix B can be

applied to these problems and lead to an n dimensional finite optimization
problem. To reduce computational complexity,a method was developed which
i exploits the affine nature of the target and requires the solution of a
smaller dimensional optimization problem. The computational benefits of
this approach can be significant, These results were presented at the
1979 Joint Automatic Control Conference. Appendix D contains a copy of

the paper which appeared in the proceedings of that conference.

With these results now established, we have been able to make some
progress on problems where uncertainty is present. More details of this
are given in the next section.

One other area which has been under investigation is that of




avoidance control. The problem is to determine if there exists a control,
satisfying the constraints, which steer a system so as to avoid a specified
target. Some results have been obtained and a manuscript on this problem
is being prepared for submission for presentation at the 1980 Joint

Automatic Control Conference.

I111. Research in Progress

The theory for constrained controllability problems without disturbances
is now fairly well developed. Using the results and insights obtained
for these problems, we are currently investigating the controllability
problem for systems with disturbances. Methods for determining if there
exists a control which steers a system, subject to disturbances, to a
target have been obtained. This research has been done in conjunction with

Bruce Elenbogen, a graduate student in Applied Mathematics who is being

supported by the grant. He is now writing "= these results as part of his

Ph.D. thesis,

Research is also continuing on controllability of systems without

;§A disturbances, We are attempting to determine methods for finding the
? % largest set of initial states which can be steered to the target in a
| specified time interval. If we are successful in this endeavor, the
techniques will be extended to systems with disturbances.

Work is also in progress on the avoidance control problem as well
as the closely related holding problem. The holding problem is the problem
of determining if there exists a control which keeps or holds a system

in a prespecified region. We have shown that the results which apply to




the avoidance problem can also be used to solve the holding problem.
Methods for obtaining avoidance (and holding controls) are currently

under development.

IV. Additional Information

Papers resulting from the research sponsored by AFOSR under Grant
AFOSR 76-2923,

1. Static Multicriteria Problems: Necessary Conditions and Sufficient
Conditions, Proceedings IFAC Symposium on Large Scale Systems, Udine,
Italy, June 16-20, 1976.

2. A Sufficient Condition for Minmax Control of Systems with Uncertainty
in the State Equations, IEEE Trans. Auto. Control, Vol. AC-21, No. &,
August 1976. (Also in Proceedings 1976 JACC, Lafayette, Indiana).

3. Necessary Conditions and Sufficient Conditions for Static Minmax
Problems, J. Math. Anal. Applic., Vol. 57, No. 2, February 1977.

4. Minmax Control of Systems with Uncertainty in the Initial State and
in the State Equations, IEEE Trans. Auto. Control, Vol. AC-22, No. 2,:

April 1977 (Also in Proceedings 1976 Conference on Decision and Control,

Clearwater Beach, Florida). !
S. A Note on the Use of the Direct Sufficient Conditions in Optimal
Control Problems, J, of Optimjzation Theory and Applic., Vol. 23,
No. 3, Nov. 1977. [
Profit Maximization Through Advertising: A Nonzero Sum Differential

Game Approach (with G. Leitmann), IEEE Trans. Auto, Control, Vol.
AC-23, No. 4, August 1978.
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10.

11,

13.

14,

Optimal Control of the End-Temperature in a Semi-Infinite Rod (with

W. E. Olmstead), Zeitschrift fur angewandte Mathematik und Physik,

Vol. 28, pp. 697-706, 1977.
Multicriteria Optimization With Uncertainty in the Dynamics, Proceedings

1977 Allerton Conference on Communication, Control and Computing,

Monticello, Illinois, Sept. 28-30, 1977,

Optimal Blowing (with W. E. Olmstead), SIAM J, Applied Math, Vol.

35, No. 3, November 1978,

A Necessary and Sufficient Condition for Local Constrained Controllability

of a Linear System (with B. R, Barmish), Proc. 1978 Allerton

Conference on Communication, Control and Computing, Monticello,

Illinois, Oct., 4-6, 1978.
Optimal Control of Systems with Multiple Criteria When Disturbances

are Present, J, of Optimization Theory and Applications, Vol. 27, No.

1, Jan. 1979.
Constrained Controllability (with B, R, Barmish), Proc. 17th IEEE

Conference on Decision and Control, San Diego, Calif., Jan. 10-12, 1979.

A General Sufficiency Theorem for Mimmax Control, J. of Optimization
Theory and Applications, Vol. 27, No. 3, March 1979.

A Simple Derivation of Necessary Conditions for Static Minmax Problesums,

J, Math. Analysis and Applic., Vol. 70, No. 2, August 1979,

A Necessary and Sufficient Condition for Local Constrained Controlladbility

of a Linear System (with B, R. Barmish), IEEE Transactions on Automatic
Control, Vol. AC-25, No. 1, Feb. 1980.

Controlling a System to a Target - Part I: Linear Systems with Origin

as Target (with B, R, Barmish), Proceedings of Optimization Days 1979,




McGill University, Montreal, Canada, May 1979.

17. Controlling a System to a Target - Part II: Nonlinear Systems with a
General Target (with B. R. Barmish), Proceedings of Optimization
Days 1979, McGill University, Montreal, Canada, May 1979.

18. A Result on Controlling a Constrained Linear System to a Linear
Subspace (with B. R. Barmish), Proceedings 1979 J.A.C.C., Denver,
Colorado, June 1979.

19. Null Controllability of Linear Systems with Constrained Controls

(wich B. R. Barmish), SIAM J. on Control and Optimization (submitted).

20. New Results on Controllability of Systems of the Form x(t) =

A(t)x(t) =+ £(t,u(t)) (with B, R, Barmish), IEEE Transactions in

Automatic Control (submitted).

Conferences and lectures (Sept. 1978 - August 1979)

1 presented a paper on local controllability at the 1978 Allerton
Conference on Communication, Control and Computing, Monticello, Illinois,
Oct. 1978.

I presented an invited lecture on the optimal control of systems with
uncertainty at the University of Rochester, November, 1978.

1 presented a paper on constrained controllability at the 17th IEEE
Conference on Decision and Control, San Diego, Calif., Jan. 1979.

1 presented two papers on controlling a system to a target at
Optimization Days 1979, Montreal, Canada, May 1979.

1 presented a paper on controlling a system to a linear subspace at

the 1979 J.A.C.C., Denver, Colorado, June 1979.
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NULL CONTROLLABILITY OF LINEAR SYSTEMS WITH CONSTRAINED CONTROLS

s

* *k
W. E. SCHMITENDORF and B. R. BARMISH

Abstract. The paper considers the problem of steering the state of a linear
time-varying system to the origin when the control is subject to magnitude i 3

constraints. Necessary and sufficient conditions are given for global con-

strained controllability as well as a necessary and sufficient condition for

STV

the existence of a control (satisfying the constraints) which steers the system
to the origin from a specified initial epoch (xo.to). The global result does
not require zero to be an interior point of the control set {J and the theorem

for constrained controllability at (xo,to) only requires that (} be compact,

not that it contain zero. The results are compared to those available in the

literature, Furthermore, numerical aspects of the problem are discussed as

is a technique for determining a steering control.

y Technological Institute, Northwestern University, Evanston, Illinois 60201
The research of this author was supported by AFOSR Grant 76-2923,

..Dcpcrcnenc of Electrical Engineering, The University of Rochester, Rochester,
New York 14627
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1, Introduction and Formulation. Consider the problem of steering the

state of a linear system
(s) k(t) = A(t)x(t) + B(t)u(e); t € (e ,=)
to the origin from a specified initial conditiom

x(to) -

by choice of control functiom u(+). Here x(t) € Rn, u(t) € R™ and A(+) and B(-)

*
are continuous matrices of appropriate dimension. Unlike the usual controll-

ability problem where the control values at each instant of time are uncon-
strained, we insist here that the control values at each instant of time belong
to a prespecified set 0 in R".

Let M ((J) denote the set of functions from R into {i that are measurable on
t:o,-). Then any control u(:) € N({l) is termed admissible. We now define
three notions of constrained controllability or, more precisely, (i-null controll-

abilicy.

Definition l.l. The linear system (S) i{s {[i-null controllable at (xo.co)

Lf, given the initial conditfon x(t ) = x , there exists a control u(+) €n(Q)
such that the solution x(:) of (S) satisfies x(t) = 0 for some t € :to.O).

Definition 1.2. The linear system (S) is globally J-null controllable

tt if (S) is [i-null controllable at (x ,t ) for all x_ € Rn.

- "0 o' o o
Our major result will pertain to the global type of controllability. To

compare our results to those of previous researchers, we also need a local con-

trollability concept.

Definition 1.3. The linear system (S) i{s locally (i-null controllable at

L, if there exists an open set VC Rn, containing the origin, such that (S)

{s null controllable at (xo.to) for all x € V.

>
This requirement can be weakened to local integrability.




The majority of constrained controllability results are for autonomous

systems, i.e., systems where A and B are constant. When [ = R, Kalman [17

showed that a necessary and sufficient cond’“ion for global R™-null controll-
abilicy is rank(Q) = n where Q B [B.AB,....An-IB:. Lee and Markus [2] con- |
sidered constraint sets 1 = R” which contain u = 0 and showed that rank(Q) = n |

is a necessary and sufficient condition for (S) to be locally {-null controllable.

Furthermore, if each eigenvalue ) of A satisfies Re(A) < 0, then (S) is globally
t G-null controllable. This result is typical of the results available when (i
contains the origin.

Saperstone and Yorke 23: were the first to eliminate the assumption that

E zero is an interior point of [} when they considered problems with m = 1 and

-
-®

a=T"0,1 Their result scates that for these problems (S) is locally (i~null
controllable {f and only {f rank(Q) = n and A has no real eigenvalues. They
also extend this result to m > | and consider the m-fold product set O = ZT{O,I:.
Problems with more general constraint sets were studied by Brammer :6: who
showed that if there exists a u € [ satisfying Bu = O and the convex hull of (i
has a nonempty interior, then necessary and sufficient conditions for local

0-null controllability are rank(Q) = n and the nonexistence of a real eigen-

vector v of A' satisfying v'Bu £ 0 for all u € {J. In addition, if no eigen-
value of A has a positive real part then the theorem becomes one for global
O-null controllabi{lity. A similar result for global controllability when

O = [0,1] was obtained by Saperstone 75]. Friedman (6] considers a linear

pursuit evasion problem where the target is a closed convex set and gives a
sufficient condition for the existence of a pursuer control, based on the
evader's control, which drives the system from a specified initial condition
to the target,

For nonautonomous systems, the most familiar controllability result is that

of Kalman 1] when 5 = R®. He showed that (S) is R"-null controllable if and

only if w(:o’tl) is positive definite for some t, € [to.-) where

e —s———
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1

W(e,e) 8 e TR (e’ (k1) dr

o
and 3(t,r) is the state transition matrix for (S). When the control is con-
strained, the major global results are those by Conti (7] and Pandolfi M87, In
771, Conti describes a "divergent integral condition'" which is necessary and
sufficient for global (i-null controllability when ( is the closed unit ball, In
order to make Conti's result more compatible with existing theory for time-
invariant systems, Pandolf{ in fB: defines the notion of p-th characteristic
exponent for time varying systems, For the special case when the system is time-
invariant, the characteristic exponent turns out to be the real part of some
eigenvalue of A, Subsequently, controllabflity criteria are provided in terms
of this exponent.

The 0-null controllability problem is also studied in papers by Dauer (92,

-

T10], Chukwu and Gronski{ (11 and Chukwu and Silliman (12]. In order to decide

on the question of [-controllability one must test a certain growth condition

which involves searching a function space. In contrast, the results given here
are finite-dimensional in nature.

-

In T13],, Grantham and Vincent consider the problem of steering a nonlinear
system to a target. They present a technique for determining the boundary between
the set of states which can be steered to the target and those which cannot.
More recently, Murthy and Evans [14] obtained results comparable to 73]-[5] for
discrete linear systems and Pachter and Jacobson [15] developed sufficient con-
ditions for controllability for case where A(*) and B(:) are time-invariant and
0 is a closed convex cone containing the origin, A readable account of the
state of the art {s contained i{n the book by Jacobson 16, Chapter 3

In contrast to much of the work of previous authors, this paper concentrates

on the case where A(*) and B(*) are time-varying. Our results for global (i-null

controllability are for constraint sets () that are compact and contain zero
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(but not necessarily as an interior point). One of our main results on global
Q-null controllability is an extension of a theorem of Conti 7] and it degen-
erates to Conti's theorem when {i is a unit ball,

OQur results for (-null controllabilicy at (xo,to) have even wider appli-
cability since they do not require O € 0. Neither do they require the existence

of a u € 0 such that Bu = 0 as in 73]-75], 77]-T12]., Thus we can analyze

controllability of a system with, for example, m = 1 and 0 = [1,2] whereas many
of the presently available theorems do not apply. Furthermore, as will be {llus-
trated by examples, there are autonomous systems (S) which are neither globally
(l-null controllable nor locally [-null controllable but nevertheless are {l-null
controllable at some (xo,co). Our theorem can be used to decompose the state
space into two sets. Initial states {n one set can be steered to the origin

while those {n the other cannot be driven to the origin by an admissible control.

2, Main Results. In order to describe our necessary and sufficient con-

ditions for global f-null controllability, we make use of the support function

H: R" =+ RU {+ ®) on {3 which for any o € R" s given by

Ho (o) @ sup{a'ay : w €0) .

e

Using this notation, we have the following theorem, which is proven in Appendix A.

'
Theorem 2.1. Suppose (i i{s a compact set which contains zero. Themn, (S) is

globally N-null controllable at t f and only if

O — w—

=
HQ(B'(T)Z(?))GT g .

{2:1) '
: b -
¢ o

for all non-zero solutions z(-) of the adjoint system

(s") d(t) = A" (t)z(L); ¢t € {to,-) "

.Thc theorem is also valid if the requirement "0 € (" is replaced with "there
exists a u € [} such that Bu = 0", This type of assumption is used by Brammer [6].




or equivalently, if and only {if

-
] suple'B'@r)e'(t ;T €0)dr =+ w
t o

o
for all A € R", \ # O,
We note that HE(B'(v)z(f)) can be viewed as the composition of a non-
negative Baire func;ion with a measurable function. Hence, the integral in (2.1)

is well defined along all trajectories z(:) of (S).

In the following corollary, we examine the special case of Theorem 2.1
which arises under the strengthened hypothesis '"zero is an interior point of
2." As we might anticipate, for this special case, the structure of the set
0 will not matter other than the requirement that it contains zero in its
interior. ;

Corollarvy 2.2, (See Appendix A for proof): Suppose there exists a com-

pact set {0 such that

(1) zero is an interior point of (;

(i4) (S) 4is globally f-null controllable.

Then (S) is also globally (i'-null controllable for any other set ' (not neces-

sarily compact) which contains zero in {ts interior.

Our proof of Theorem 2.1 will make use of a more fundamental result (also
proven in Appendix A) giving conditions for (-null controllability at a fixed
initial epoch (xo,to). To meet this end, we define the scalar function

J:R"x Rx R®" « R by

y 5
(2.2) I, T & xiat(T,e 0 + ft B (B' ()8 (T,7)0)dr

<]
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We note that J(xo.T.k) can be viewed as the support function on the so-called
attainable set. This fact is used implicitly in the proof of the next theorem.

Theorem 2.3. Let (i be a compact set. Pick any subset A of R" which contains

interior point. Then (S) is (i-null controllable at (xo.to) if and only if
(2.3) min{J(xo.T.k) : A €N =0

for some T € fto.-), or equivalently, if and only if,

—
—
>
m
-

(2.4) J(xo.T,k) 20 or a

=
or some T € _to.ﬂ).

Comment. If (i i{s also convex nnd A and B are constant, the sufficiency
portion of this theorem is just a special cise of Theorem 7.2.1 of [6].
Naturally, the smallest time T for which (2.3) holds will be the minimum arrival
time at the origin.

Theorem 2.3 can also be stated in terms of the adjoint system (S'), {.e.,

{f we take A = R" and notice that z(t) = :'(co,c)z(to) is the response of the

adjoint system (S'), then the following theorem is easily proven. (The proof is

established by making the change of variables z(t) . o' (T,t)N).

Theorem 2.3'. Let (i satisfy the hypothesis of Theorem 2.3. Then (S) is

O-null controllable at (xo.to) Af and only if there exists some T € (to.-) such

that
ot
(2.5) xc',z(to) - :t an(n‘('r)z(f))dv 20
o

for all solutions z(-) of (S8').

This theorem demonstrates that the question of {i-null controllability at
(xo,:o) can be answered by solving a finite dimensional optimization problem,
Moreover, the question of global (l-null controllability can also be answered

via a finite dimensional optimization problem.

S S - Ittt
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Corollary 2.4, Let 0 and A be as in Theorem 2,3, Then (S) is globally

G-null controllable at to if and only if for every X € R" there is acti

T € Mt ,») such that

min{J(xo,Txo,A) : AV €A} =0

) The proof of this corollary follows from Theorem 2.3 in conjunction with

the definition of global li-null controllability.

There is one point worth noting. In using Theorem 2,1 to éheck for (-null
controllability at €, (i must be compact and contain O, 1If Corollary 2.4 is
used, only the compactness assumption must be satisfied.

Next, we present some examples to illustrate how our theorems can be
applied and to compare our results to those of [3-5],

F 1 Example 1. Let x(t) and u(t) be scalars and suppose (S) is described by

x(t) = x(t) + u(e) , ¢t €70,=) .,

This system is Rl-null controllable {f [} = RI. But suppose (] = [0,1]. Then the

system is not globally (-null controllable at t, - 0. This follows from
-2
? Theorem 2.1 since, for z <0, H.(B'(t)2(r)) = 0 and thus HF(B'(f)z(v)>dr < 4+ @,
e Io .
Also, using 73] or (4] it can be shown that the system is not locally Q-null

? controllable. Nevertheless, there do exist initial states X from which it is

f : possible to steer the system to the origin, Such states can be determined via

Theorem 2.3,

For the above

; T rt Ter

i J(x sTh) = x eh + | sup{we’ A : w € 70,1]Vdr
o]

When A = (-1,1], this becomes

T
xoe by A<0

J(x,TA) =
tx T
xoc + A(e’= 1) A>0




and thus

nin{J(xo.T.k) : A €T-1,111 =0

if and only if x 0 and x, 2 c'T- 1 for some T € [0,»), or equivalently, if
and only {f -1 < X € 0. We conclude that even though (S) is not locally Q-null

controllable, it is Q-null controllable at (xo,O) whenever -1 < x, s 0.

If 0 = (1,27, neither T3-5] nor Theorem 2.1 apply. However, we can use

Theorem 2.3, Since

e T A>0
H.(B'(t)e'(T,T))) =
Q '\G(T-‘) A< 0
J(xo.T.k) becomes
xoetx + ZX(eT- 1) >0
J(x ,T,\) =
x T
xoeI\ + A(e = 1) As 0

and

nin[J(xo,T,k) :x€(-1,111 =0

{f and only if 2(e - 1) s x, % e - 1. Thus (S),with 0 = [1,2],is G-null con-

trollable at (xo,O) whenever -2 < X, < 0,

As a final variation of this problem,suppose | = [-a,al. Then [4] or
Theorem 2.1, shows that (S) is not globally (J-null controllable. Using [4],
it can be demonstrated that (S) is locally 0-null controllable while Theorem 2.3
not only tells us that (S) {s locally (i-null controllable but also that the states
X which can be steered to the origin are those satisfying -a < X, < a.

Example 2. Our second example illustrates the application of Theorem 2.1

for a nonautonomous system., We consider the time-varying two-dimensional system

(S) described by




s

R

*l(t) = u(t)sint

1
%,(t) = - =5 x,(t) + u(t)tsint, t € [0,m)
(t+l)
The control constraint set is taken to be O = [0,1]. By a straightforward com-

putation, the state transition matrix for the adjoint system (S') is found to be

§ t-t T
G T
(t+1)(to+1)
B.(tst) =
0 1
ke -

Hence, in accordance with Theorem 2,1, (S) is globally (-null controllable at

™ 0 {f and only {f

P —Tl zm ]

sup wlsin+ rsin~] L 7 ldr m+ @
- r S |
o w€(O0,1, 0 1 202_1

for all non-zero initial conditions z - (= s

<
0 291 %02+ Evaluating above, this

reduces to the requirmment that

2.6 TR S ‘o L)
(2.6) .‘OI(T) .-oux 1201 stn‘r#zozf sinf(1+f—*{);d1'-+¢
for all E £ 0, We shall show that this condition is indeed satisfied.

Case 1. 25, £0, 25, ® 0. For this case, we have

:? ¢

3 rm)« = | max{0, z,, sin tYdr

i o ‘o

i

] - '{.3 2y, sin v dr

% 1

H A

g where 31 = {r 20: 201 sin v > 0}, Because the range set 31 of integration is
#

the union of infinitely many intervals of length m, it follows that

J..I('r)dv *t+e

[}




g

= 10

Case 2 hi 40, LecT & l2gy] + 1 Th £
ase 2. z = anything, z s et . en to verify
—— 01 02 |z02|

(2.6), it sufficies to show that

K]

I(T)d‘? - 4+ ®
Ta

*
where 32 s f{r 271 25, sin T > 01. (Recall that the integrand is non-negative.)
Now, for v € 32. we notice that the integrand I(r) can be bounded from below as

follows:

A 1y e
2,810 T + 2,7 sin T(l . § ‘202 lsin T‘T(l @~ |201||stn |

\
| Isin !

- (“oz' v -lzg )

* \
2 (12| 12,1 |stn +

= lsin 7!

Hence,

=
I(r)dr 2 | lsin r]dr = + =
9, 32
because the range of {ntegration is once again the union of infinitely many
intervals of length r,

We conclude that (S) is globally (i-null controllable.

% Relationship with Other Controllability Results. In this section, we

compare our controllability results with those of Conti [7] and Brammer [4]). We

also consider, as a limiting case of our theory, the usual controllability problem

1
P
H

obtained when magnitude constraints are not present,

Result of Conti. An important special case of Theorem 2.1 occurs when (i is

O=fwer": ol s}

where || */| 1s a prespecified norm on R". For this situation we have

o s TR T !M

i

a closed unit ball in IP. f.0,, 4




asar um‘:

T
Ho(B'(r)2(r)) = sup{w'B'(r)z(r) : [lwl £ 1) = [[B'(r)z(r)ll,

where | . _ 1s the norm on R" which is dual to .. (For example | /|, is the

$¥ sovm when Il is the 2™ norm; !! /| and Ilel , coincide when {|+| is the usual

1.2 (Euclidean) norm.)

By Theorem 2.1, we conclude that (S) is globally Q-null controllable at

* to if and only {f

’v

(3.1) LB )zl 41 =+ @
e -
o

for all non-zero solutions z(*) of (S'). This result is established indepen-
dently in Conti (7] and also discussed in Pandolfi 78). This result, in con-

Junction with Corollary 2.2 leads immediately to the following Propositionm. i

Proposition 3.1. Let 0 be any set containing zero in its interior. Then

(3.1) is a necessary and sufficient condition for global (-null controllability.

Thus, Conti's condition is a necessary and sufficient condition for global
O-null controllability for any set {J containing zero in its interior, not just

when () {s the closed unit ball.

Result of Brammer. Consider the case when A(t) = A and B(t) = B are time-

invariant. For these autonomous problems, the following necessary conditions
n-1
can be obtained directly from Theorem 2.1. Recall that Q = [%,AB,....,A BJ.

Theorem 3.2. Assume A(t) ® A and B(t) ® B are time-invariant and that

(1 is a compact set which contains the origin. 1If (S) is globally (-null con-

trollable then
(1) rank (Q) = n

i (11)  there is no real eigenvector v of A' satisfying v'Buw < 0 for all o € Q.

i ' : (111) no eigenvalue of A has a positive real part.
The proof of this result is in Appendix B.

T
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In (4], Brammer has obtained the same result using a different method of
proof. There, he also shows that the above three conditions are also sufficient
for global (~null controllability in the time invariant case if it is also
assumed that the convex hull of () has a non-empty interior. Alternative proofs
of the sufficiency result have been given by Heymann and Stern [25] and Hajek.
The latter proof is in [5].

We note that the system of Example 1 of Section 2 does not satisfy these
three conditions. Nevertheless, it i{s -null controllable at (xo,O) for some

initial states xo.

The Case (=R". When Q=R", it is well known "17, p, 171] that the time-
varying system (S) is completely controllable (globally R™-null controllable at
to in our notation) if and only if the rows of :(to,-)B(-) are linearly indepen-
dent on some bounded interval [to,T:. Here we s*ow that when Q-Rm, equation (2.1)
is a necessary and sufficient condition for global R™-null controllability. This
is accomplished by showing that (2.1) {s equivalent to the rows of @(to,~)5(')
being linearly independent on some bounded interval fto,rj.

Proposition 3.3. (S)rig globally R™-null controllable if and only if

- \
H _(B'(r)a(r) jdr = + =

ptl P
o

for all non-zero solutions z(:) of (S').

The proof of this result is in Appendix B,

4, Some Computational Aspects. In a large number of problems, one may

have to resort to the computer to check whether or not a system {s (J-null con-
trollable, When using equation (2.3), a solution of the minimization problem
uin(J(xo,T.l): % € Al is needed. Direct application of so-called gradient or
descent algorithms to compute nln(J(xo.T,l): A € Al {s precluded by the fact

that J(xo,T,k) is in general not differentiable in A. This fact is a consequence




HET

of the sup operation involved in the definition of HQ(B'(T)G'(T,T)k). Fortunately,
however, numerical computation of min{J(xo,T,k): A € A) is feasible if '"generalized
steepest descent" schemes are used., These schemes rely on subdifferential* rather
than gradient information. The next two lemmas develop a description of the sub~

differential of J(xo,T.k). The proofs are given in Appendix C.

Lemma 4.1. For fixed (xo,T) € R" x R, J(xo,T,k) is a lower semicontinuous

convex function of A\.

Lemma 4.2. For fixed (x_,T) € R" X R, the subdifferential of J(x,T,%) at

\ € R" consists of all vectors A, € R" of the form

.
(4.1) Ay = (Tt )x  + | o(T,7)B(r)w,(r)dr
to
where
(4.2) w, (r) € arg max{w'B'(+)0'(T,7)A : » € )

o« {w €0 :w'B' " (T)e"(T,T)A 2T B'"(+)@'(T,7)A ¥ 1 € Q)

for almost all + € [0,T].

Remark. Since J(xo,T.\) is the support function on the attainable set (see
discussion preceding Theorem 2.3), a geometric interpretation of the subdifferential
at ) is available: This set consists of all vectors in the normal cone to the
attainable set at . (See Goodman 724, p. 285]).

Formulae (4.1) and (4.2) hold for arbitrary compact-convex {i. Often however,
more structural information is known about {i. In such cases, (4.1) and (4.2) may

simplify. To illustrate, suppose

A, € aJ(xo,T.x), the subdifferential of J(xo.T.') at ), if and only if

' n
J(xo.T.z) > J(xo.T.X) +(2=-2)"), forallz€R .

S i ot i i ——
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, e £ 1 r .
Qe Ml.ullx (M M1 X e X [ um.un] ;M > 0)
Then, the maximum in (4.2) is achieved in the 1th component by

lw, ()] €M sgnlB'(r)e"(T,rN], 5 1= 1,2,...,m
where sgn X s 1] £ x> 0; sgn x . ~1 1f x< 0; sgn O g f-1,1]. Consequently, for
this case, we can substitute into (4.1) and show that the subdifferential

EJ(xo.T.k) consists of all vectors 5N € R™ of the form

T m
P
(4.3) Ay ® Q(T,O)xo + :o iElnih‘('r,f)sgn k'hi(T,r)d1

where ht(T,r) is the l:h column of H(T,r) : ¢(T,r)B(r). This description of the
subdifferentials of J(xo,T,°) can be used in conjunction with the generalized
steepest descent algorithms to compute min{J(xo,T.X): A €AY,

We also note that X is uniquely specified by (4.3) if

measure{r : A'h (T,r) = 0} = 0  for t=1,2,...,m .

For such A, aJ(xo.T.l) is precisely ka(xo,T.l). the gradient of J(xo,r,') at i.

- The Steering Control. Using the results of Section 2, we can determine

if (S) is 0-null controllable. However, those results do not give a method for

determining a steering control u, (+) € M () which accomplishes this objective.

One method of determining an appropriate u'(-) is to solve the time optimal
control problem, {.e., find u,(:) € M({i) which steers (S) from given (xo,to) to
the origin and does so in minimum time., If there is a control which steers the
system to the origin, then there is a time optimal one f23. Hence, in principle,
a steering control can be numerically computed using any of a wide variety of
algorithms which are available for solution of the time optimal control problem.

Since the solution of the time optimal problem {s determined by solving a
two point boundary value problem, it can be quite difficult to obtain the steer-

ing control this way. In this section, a "simpler" alternative method for
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generating a steering control is presented., This technique does not involve a

two point boundary value problem and leads to a control which steers the system

arbitrarily close to the origin, Our result is obtained from the following

minimum norm problem:* Given initial point (xo,to) and a final

time T, find

u(*) € M(@) which leads to the smallest value of |x(T)/!. The solution of this

minimum norm problem is characterized in the next theorem.
Theorem 5.1. (See Appendix D for proof). Let (xo,to) and

z n
Suppose that i € R achieves the minimum of J(xo,T,k) over the

T be given.

closed unit ball.

Then any solution of the minimum norm problem satisfies

(5.1 u,(r) € arg max{w'B'(r)¢'(T,T)A, : w € Q)

or almost all v € fto,T:.

We note that condition (5.1) will uniquely determine u*(~)

minimum of w'8'(r)¢"'(T,r )i, is uniquely achieved. For example,

& i P 1 = 1 [ 1
a L Hl'“l‘ x 1 “2-"2- X o6 X | Hm.Mm. (H1 >

Then (5.1) requires

-

4.2) [u*(v)'j1 EM sgn[B'(v):’(T.v)K*.‘1 R L N D S

i

For the case when the minimum of x(T) = 0, A, = 0 and (5.

whenever the

suppose

0)

1) will not

determine a control which steers (S) to the origin. The following heuristic

procedure can be used to determine a control which steers (S) arbitrarily close

to the origin: Choose a T such that the minimum of | x(T) is nonzero. As T is

increased, the minimum of |'x(T) approaches zero and the corresponding solution

u (), generated via (5.2), of the minimum norm problem results

which steers the system progressively closer to the origin.

*
(S) here is required to be R™-null controllable,

in a control
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In our next theorem, we provide another useful characterization of steering
controls, For fixed T € M0,=), X € Rn, we define the functional V,r: R xm@) - R
by
ol
V.r(\,u(')) = 2'e(T,0)x  + ;0 A'9 (T,7)B(r)u(r)dr

Theorem 5.2. (See Appendix D for proof). Pick any compact convex set /. com-

taining zero as an interior point. Then Vr(\,u(°)) possesses at least one saddle |

point (A, ,u (")) € A x M(Q). Moreover,u (-) steers x to zero at time T if and

O — —

Onl! Lf_ VTO\*)U*(')) - oo
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6. Additional Applications. In this section, we use our results to obtain

an existence theorem for the time optimal control problem and also apply our
results to a pursuit game,

Existence of Time Optimal Controls. Consider the following time optimal

control problem: Find u(-) € M(Q) which drives the state x(*) of (S) from an

initial position x(to) - X, to the origin and minimizes
e
Cl{u(s)) = | 4t ; =
bl -
o

g " arrival time at the origin.

The classical theorem for existence of a time optimal control (e.g., Lee and

Markus [2]) requires that there is at least one control which transfers the

state x(*) of (S) to the origin. Combining the result of {2: with our Theorem 2.3,
we obtain the following existence lemma.

Lemma 6.1, There exists a solution to the time optimal control problem if

and only if there fs some finite t. € [t ,=) such that

{ . Al =
mintJ(xo.tf.k) f A E R 0

Furthermore, the time optimal cost is given by

C*(u,(-)) - min{tf : min[J(xo,tf,\) t A €Nl =0

Pursuit Games. Next, we consider the pursuit game studied by Hajek (18],

The system {s described by

(6.1) %(t) = Ax(t) = p(t) + q(t) ; p(t) € P, q(t) €Q x(to) -

where P and Q are compact convex subsets of R", The pursuer p(*) seeks a
strategy @ : QX fto,-) < P which steers x(:) to the origin for all possible
quarry controls q(:) : fto.-) 4 Q. A quarry control is admissible if it is

measurable and a strategy is admissible {f c(-) preserves measurability.
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o i
In (18], a solution to this problem is obtained in terms of the associated

control system

(6.2) y(t) = Ay(t) - u(t) ; u(e) € P . Q; Y(to) ook )
where P . Q is the Pontryagin difference. 1{.e.,

e Q % (x€er": x+Qq cPr .

Admissible controls u(:) above must be measurable.
Simply put, Hajek's result says that the state x(-) of (6.1) can be forced
to the origin, for all admissible q(+), if and only if the state y(:) of (6.2)

can be steered to the origin. More precisely, the following theorem is available.

First Reciprocity Theorem (18], Initial position x, in (6.1) can be

(stroboscopically) forced to the origin at time T 2 to by a strategy ¢(-) if

and only £{f, x in (6.2) can be steered to the origin at time T by an admissible

O —

control u(*). Furthermore, o(-) and u(+) are related by
(6.3) c(q,t) = u(t) +q .

By applying Theorem 2.3 to (6.2), we obtain another condition for deter-

mining £{f (6.1) can be forced to the origin,

*
Lemma 6.2. Assume P - Q compact. Pick any subset A of R" containing zero

83 an interior point. Them x in (6.1) can be forced to the origin at time

T2t by astrategy o(*) if and only if
mln[x(xo,T.k) t A €A =0

where

A.(T -t ) uT
' o i
K(x_,T)) v x!e e




s 10 =

It should be pointed out that in addition to pursuit game interpretacion |
of (6.1), (6.1) can also be viewed as a problem of steering a system with dis-
turbances to the origin if q(:) is thought of as a disturbance. Also, the results

apply to systems described by
%(t) = Ax(t) + Bp(t) + Cq(t) ; p(t) € P , q(t) €Q |

if one replaces Bp(t) by p'(t), Cq(t) by -q'(t), P by BP and Q by CQ.

B
k
¥
;
¥




APPENDIX A
+ Proof of Theorems 2.1, 2.3 and Corollary 2.2, Since Theorem 2.3 {s used in the
proof of Theorem 2.1, we first present the proof of Theorem 2.3, There are many
ways to prove Theorem 2.3; our proof exploits the convexity of the attainable set
in conjunction with a measurable selection theorem. We note that a proof of the
sufficiency part of the theorem is given in 6, Theorem 7.2.1). To simplify our

notation,we henceforth take to- 0 without loss of generality. This will apply

to subsequent appendices as well,

Proof of Theorem 2,3, Let AT(xo) be the set of states which can be attained

from xo at time T, {.e.,
" 4

@y agx) =laox ¢+ Tamn@ume  urenm}
o

The set AT(xo) is convex and compact "2, From Def. 1.1, it follows that x, can
be steered to O at time T if and only if O€ Ar(xo) or, equivalently, by the Separating

Hyerplane Theorem [21],

(A.2) 0s¢ supj\.'l : GEAT(XO)\'

for all vectors )\ € R". Using (A.l), requirement (A.2) becomes
¢oT \

(A.3) Mo(T,00x 4 supt ! A'@(T,TIB(r)u(r)dr : u(+) €N @)} 20
Yo

for all )\ € ", As s consequence of the measurable selection theory of 9], we

: can commute the supremum and integral operations in (A.3)*. Thus, 0 € AT(xo) if H
é and only {f
: ;
§ T
: (A& 0s x'e(T.O)xo + ] H(B'(r)e'(T,r)\)dr = J(xo,T.\)
) e

Rod

for all 3 € R". Since J(xo,T.A) is positively homogeneous in ), we can

S

restrict A to A in (A.4). Theorem 2.3 now follows, c

¥ #(T,r) B(r) being a Cartheodory function enables us to apply the results of [19],

Fg T

|7 ——— v oy
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Next, we present the proof of Theorem 2.1. In the proof, Theorem 2.3 is
used,

Proof of Theorem 2.1 (Necessity): We suppose that (S) is globally (-null
controllable at to- 0. Let z(+) be any non-zero solution of (S'); we must

prove that
o

(A.5) ! &1(8'(7)2(1))d7 -+ @
sot

Proceeding by contradiction, suppose there is a non-zero solution Z(+) such that

. "
%@%ﬂuﬂmf-a.a<-
. o .
Then there {s a positive constant 2 < = such that
-
‘ &7(8'(1)2(1))d1 < 2
o .

Define

x* 2 .:322‘22_ : " £ 0
° 2 Ot 4

*
We now claim that X, cannot be steered to zero by an admissible control

u(*) €(0). To prove our claim, for each t € T0,®), define
A $0'0,002(0) ;2 #0
Now, given any t € [0,=),
* .' L] lrt Al . d
J(x e, ) = x ‘@' (e,00, + .loun(B (r)e'(t,m)A )dr
’o! !.t ' 2
- x '2(0) « .ona(n (r)z(r))dr
€ -28 + 2

<0 .,
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Taking A = R" in Theorem 2.3, it follows that

2 A € A) " <
min{J(xo,c.l) P €AY S J(x e ) <0

*
for all t € (0,=). By Theorem 2.3, (S) is not (-null controllable at (xo,O). c
(Sufficiency): Now, we assume that (A.5) holds, Again, we proceed by con-
tradiction, 1{i.e., suppose (S) is not globally (i-null controllable at to- 0.
Hence, there exists an initial condition x: # 0 which cannot be steered to zero.
By Theorem 2.3 (with A\ = Rn). we can find a sequence of times (tk):_l and a

sequence of vectors (kk):_l having the following properties:

3 8 lim tk - 4> ;

k=»+® 3

R
P2, J(xo’tk’\k) < 0 for k= 1,2,3...

H . We are going to construct an initial condition lo # 0 for (S') which makes the

integral in (A.5) finite. To meet this end, let

¢' (e, ,00
zk = : tk k ; ko= 1.2,-.. H
IENCRR D2 Wi

We note that each 2, above is non-zero because xk # 0 and ¢(tk.0) is invertible.

Then (zk):-l {s a sequence in R" belonging to the set

: | s@fzer: |z =11 .

Since S is compact, we can extract a subsequence (zk );_1 which converges to

some vector 10 € S. We will now show that ?o is the initial condition which

we seek, Let Z(+) be the trajectory of (S') generated by z(0) A';o; let (tk );_1
]
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denote the subsequence of times corresponding to (zk )3_1 . By Pl, we have
J

lim ¢ -4+ ®

Yo Ky
and by P2, it follows that
th
* [
xo'a'(tk O+ | aﬁ(l!’(f)m'(tk T )dr < 0 for 3 =1,2,3,...
] ] o ] ]
Dividing by ”3'(tk YO ! and noting that H. is positively homogeneous, we
J j e |
obtain |
tkj
f "
B (B'(1)8' (0,72, )dr = 2 B B ¥ e LA
~° “n j q j S

sllx)l for § =1,2,3,...
o e

We would like to obtain an inequality {nvolving 'i'o with an infinite upper limit

on this integral. To accomplish this, we define

b, @) . o8 e B ), 28 v 8 f°'°kj3 :

= 0 otherwise; j = 1,2,3,...;
£() WU (B'(1)0'(0,1)F) ; € [0,0)

and make the following observations:
o

(1) £, (1)dr s bounded (by '!xzf) for § = 1,2,3,...
‘o

]

(i1) fk (r) converges pointwise to f(r) on [0,»)., This observation is

J

proven using the facts that 2,

: - 'Eo, t“j < + « and !ln depends con-

i
3
:
i
b
£
g
i
¢
H
%

tinuously on its argument,




i
|
|
|
|
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Applying Fatou's Lemma (20, p. 83],we have

9. p’
J f(r)dr € lim inf

fk (r)dr
0 j== ‘o

]

=
< lim sup | fk (v )d~r

-

j*= g

*,

s llxll
o

Substitution for f(r) above gives

"a (B'(+)8'(0,1)Z )dr ¢ x|
p :: T ¢ » T ° T \ o_! ’

»
’ ]

(3" (1)F(r)dr < "x:1
o

< @

which {s the contradiction that we seek. This completes the proof of the theorem, O

Proof of Corollary 2.2. Suppose [ and {I' satisfy the hypotheses of the

corollary. We are going to show that (S) is globally (i'-null controllable. To
prove this, {t i{s sufficient to find a subset Qi < G' such that (S) is globally

Ss-null controllable: Pick & > 0 such that

af 8 (w: el s 1 c a2’

(This can be accomplished because zero is interior to (i'.) Now, to prove that

38 has the desired property, we pick R > 0 such that
¢ g { . .4 1: {
“R w: {w € R} 2 0

(This can also be done since (I is compact, hence bounded.) Let z(:) be any




non-zero solution of (S'). Then we have

p® e
l’ln,(n'(T)Z(T))d‘f = sup{w'B'(r)z(r) : 'wl < 8ldr
A “o
r.
=8 B'(r)z(r)ldr
e
8 ™
=z, RB'(m)zr)lldr
)
s ® iy
-i: sup{w'B'(r)z(r): |w| < Rldr
o
Y
=3x. B B'(r)z(r))dr
§° A.R
- 4 @™

since (S) is globally :‘.R-null controllable. (ﬁk-null controllability follows from

G-null controllability in conjunction with the fact that 0, 2 (.) By Theorem 2,1,

we conclude that (S) must be globally .",-é-null controllable and hence ('-null con-

trollable. O
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APPENDIX B

Proof of Theorem 3.2. (i): This condition follows immediately from the fact

that global R™-null controllability is necessary for global {i-null controllability.
It is also possible to prove (i) directly from Theorem 2.1. Suppose (S) is

globally Q-null controllable but rank (Q) < n. Then there exists a v € Rn, v #0,

such that B'e™® ®v « 0 for all t 2 0. Let 2(0) = v. Then z(r) = ¢ A %v and
- s - ¥t ;
, sup W'B'z(r))dr = | sup (w'B'e v)dr = 0 }
Yo w€ D “ow€ O |

which contradicts Theorem 2.1,
(i1): Suppose (S) is globally (-null controllable but there exists a real eigen-

vector v of A' satisfying w'B'v < 0 for all w € . Denoting by )\ the real eigen-

value associated with v, we have e'A tv = e.ltv. With 2(0) = v,z(v) = e.A Ty = e-XTv

and
e -2 "
sup (w'B'z(r)dr = sup (w'B'e Tv)dr
“ow€ ‘o w€ O
-
= e sup (w'B'v)dr
‘o w€ O

Now this integral is less than or equal to zero since sup (w'B'v) < 0 and e-\t

w€ O
This contradicts Theorem 2.1.
(i11): Again the proof is by contradiction. Assume (S) i{s globally (J-null con-
trollable but A has an eigenvalue ) with a positive real part. Then )\ is also an

eigenvalue of A' so that A'v = v wvhere v i{s an eigenvector corresponding to A'.

Let 1 and v denote the complex conjugate of ) and v, They satisfy Av = iv. Hence,

e2' % 2 o™ and ' e S

Consider the solution of the adjoint equation corresponding to the initial con-

dition 2(0) = v + v. (Note that z(0) {s real.) For this z2(0)
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sup (w'B'z(t)) = sup (u'B'e'AIT(v + W)
w €N w €N
= sup [W'B'(e')‘tv + e"‘b\;)-1
w€Q ~ i

= sup fm'B'e’“qu cos bt + 2n sin b:];
w€Q

where a and b are the real part and imaginary part of A and n and m are the real ;
1)
part and imaginary part of v, Let M = sup sup w'B'T2n cos bt + 2n sin bt],

t20 w €N :
M is finite since 0 is compact, i.e., M < 2 max{|n|,|m|} "Bl sup !wll. Thus

w€n
sup (@'B'z(r)) < Me 2F
w €N
and 1
9’ ,.’
sup (w'B'z(r))dr < M | o e
‘ow €N “o

The integral on the right is finite since a > 0 and we have a contradiction to

)

Theorem 2.1,

Proof of Proposition 3.3. (Necessity): Suppose (S) is globally R -null

controllable. Then there is a finite interval [0,T] on which the rows of
4(0,*)B(*) are linearly independent. Thus, for every non-zero vector zo € Rn,

it follows that B'(t)e'(0,t)z_ # O for some t € fo,T]. Since, B'(+)¢'(0,*)z

o

is continuous, there must be an interval I = [t - &,t + &] on which
B'(fm'(o,t)zo £ 0 for all v+ € I. On this interval, we have
sup{w B'(r)8'(0,1)z_ : w € ™ e+o .

Hence, using the non-negativity of Hn(-), we conclude that

ri'.lfl n(l'(‘t)!(?))df 2 [ H n(s'(7)¢'(°’f)'o)d'
‘o R “ER

- r oup{w'B'(t)e'(O,f):o tw € R‘]d«v
i




o VT

o B -
(Sufficiency): Proceeding by contradiction, we suppose that for all non-zero
solutions z(+) of (S'), we have

‘(Pu (B'(r)z(r))dr = + =
. m
o R

but the columns of B'(*)3'(0,*) are linearly dependent on every bounded interval
(0,7]. Let (rnS:_l be a monotone increasing sequence of times such that .. w,
Then, for each n, we can find a non-zero vector ?n such that B'(T)@'(O,T)?n 0

on 0,7 ). Let
n

i

z A 2 ar. - wpe B sl
T g

Then, (zn\:_l is a sequence in the (compact) unit ball. Hence, we can extract a

subsequence z converging to some Eo,' 20' = 1, We notice that the corresponding
3

subsequence of times Tn still converges to + =, Furthermore, for each fixed

b

v+ € (0,»), we have

B'(r)¢'(0,7)2 = 1im B'(r)¢'(0,r)z
(o] n
j4e b

-0

Consequently, if Z(r) is the trajectory mate of 20.

- -
H (8" ()2(r))dre! suplu'B'(1)2' (0,1 : w € RMdr = 0
‘o R ‘o

)

which contradicts the assumed hypothesis.
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APPENDIX C

Proof of Lemma 4.l. For (xo.T) fixed, J(xo,l‘,)\) can be expressed as

J(x,T,A) = sup{H (V) : w(*) €M)

where

=y
HOOO B 2'a(T,0x +  2'a(T,m)B@w@)dr

o
Consequently, J(xo,T,-) is the pointwise supremum over an indexed collection of
continuous linear (hence convex) functions. Hence J(xo,T.-) itself must be con-

—_

vex and at least lower semicontinuous (in fact, continuous).

Proof of Lemma 4,2, We prove this lemma using some of the standard prop-

erties of subdifferentials given in Rockafellar [21], 722]. Since both functions

in the definition of J(xo,T,k) are finite and convex,i € 3J(xo,T,k) if and only

if
oT <
A, € a(x;:'(T,O)i) +3 Hq(n'(f):'(T,T)l)df (by Theorem 23.8 of [22))
\vo .
oT
= 2(T,0)x  + IR (B' (r)@ "' (T,7)A)dr (by Theorem 23 of [22))
\o .
Py
= 3(T,00x  + .o:"'*’“”‘”:"“”’”mf)-a'<f)e'<r,7)\"’

(by Theorem 23.9 of [21))

Now, by Corollary 23.5.3 of [21], w (1) € aun(c(r)) if and only if

w,(r) € arg max{w'S(r) : « € Q). Substituting the required form for & above, we

™

obtain our desired representation for ).




APPENDIX D

Sketch of a Proof of Theorem 5,1, Let f ; LI(O,T;RE) - R, g8 : R" - R,

Ay : 10, 7;:R™ < R® be given by

f(u) @ 0 1f u(+) €EM@Q) ;: £(u) ® + w otherwise ;

g(2) .- “Q(T,O)xo +2 ; z€eRr";

T
Agu 8 | 2(T,1)B(Mulr)dr .

~

o

Then, using the notation above |
tnfe) ® inf'x(M) : u(e) €@}

b = {inf{f(u) -3(LTu) : u € Ll(O,T;Rm)\ .

Written in this way, {nf(MN) {s in the standard form for application of
Rockafellar's extension of Fenchel's Duality Theorem (cf, fZJ], Theorem 1), The
1 : functionals f and g are respectively proper convex and concave functions; it can

be easily shown that {nf(MN) {s "stably set" -- a technical precondition for

Rockafellar's Theorem. .7
By carrying out the computations involved in Theorem 1 of (23], it can be

shown that the problem

e
min OMN) min{J(xo.T..\.) : A € A)
is dual to inf(MN) in the following sense:
*
{nf(MN) + min(MN) =0 .,

The "extremality condition" in Rockafellar's theorem provides a necessary con-
*
dition which must be satisfied by all solution pairs A, solving (MN) and u (*)

solving (MN). This extremality condition requires

T — —
| ——




*
Aphe €2£(uy)
where i; {s the adjoint of AT and 3f(u,) is the subdifferential of f at u,. For

our choice of f, this necessary condition particularizes to
A 2(T,7r)B(r) € (Normal cone of M((i) at u (-)) .

We denote this normal cone at u, by Nc(u*). By definition of the normal cone, we
*
have v(-) € Nc(u ) {f and only {f
s P, <

ul(t)B'(r)e ' (T,r)r dr =  sup{w'B'(r)e'(T,T)x, : w € Oldr .,
o ‘o

This {s possible only {f & = u_(r) achieves the supremum of u‘B'(f)c'(T,f)k*

for almost all v+ € 7T0,T]. Equivalently, we must have
u (r) € arg max{w'B'(r)e'(T,7))\, : w € Q)
for almost all r € 70,T].

Proof of Theorem 5.2. As in the proof of Theorem 2.3, let AT(xo) be the set

of states which can be attained from X, at time T, We recall that this set is

compact and convex, Define HT : A X AT(xo) < R by

A
(0.1) Wo0L8) 2 %

In accordance with Proposition 2.3 of (19, p. 171], Wo(h,8) will possess a saddle
point because the following conditions are satisfied:
(D.2.1) For all ) € A,W(.,*) is concave and upper semicontinuous.
(D.2.2) For all § € Zr(ﬁ). W(*,%2) is convex and lower semicontinuous.

Since HT(X.!) possesses a saddle point, we note that

min max v 0,u(:)) = min max  W.(1,8)

€L u(-)EN(@D hen  EeAL(x)
Furthermore,

max min VT(X.u(-)) =  max min wt(\,z) a

u(*)EM @) \EA §€AT(x°) LEA
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These equalities, in conjunction with the fact that W_ possesses a saddle point,

T
imply that VT also has a saddle point,.
To prove the last part of the theorem, we take (1*.u*(')) to be a given
saddle point of Vr(l,u(-)). Hence we have
(0.3) Vohu,(4)) = min max VaO,u()) .
T \€A u(-)EM@Q) T

Using a measurable selection argument, as in the proof of Theorem 2.3, it is

also apparent that

(D.%) min max VT(X.u(-)) = min J(xo,T.k)
AEA u(*)EM () NEA

From (D.3) and (D.4) we conclude that

(D.S) VT(X"u*(.)) = min J(XOITD)\) .

VEA
From Theorem 2,3 and the comments following the theorem, we know that x, can
be steered to zero at time T {f and only {f
0 = min J(xo,T.\)
AEA

= Vo0, () (by (D.5)).

*
To complete the proof, we must show that if VT(X*,u'(')) = 0, then u (*)

steers xo to 0. Now
0= VT(\',u*(—)) < vr(l,u.(-)) for all % € A

or

AT

5
0 <3 a(T,00x, + | (T,1B()u (r)dr | for all ) € A. ‘

o




33 =
Thus
(D.6) 0< ' :(T.xo,u*(')) for all \ € A
Since 0 is an interior point of the convex, compact set A, (D.6) implies
x(T,xo.u.(')) 0 and u _(+) is a steering control. =
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NULL CONTROLLABILITY OF LINEAR SYSTEMS WITH CONSTRAINED CONTROLS

e
W. E. SCHMITENDORF and 3. R. BARMISH

Abstract, The paper considers the problem of steering the state of a linear
time-varying system to the origin when the control is subject to magnpitude
constraints. Necessary and sufficient conditions are given for global com-
strained controllability as well as a necessary and sufficient condition for
the existence of a control (satisfying the constraints) which steers the system
to the origin from a specified initial epoch (xo,to). The global result does
not require zero to be an interior point of the control set [} and the theorem

for constrained controllability at (xo.to) only requires thac [ be compact,

not that {t contain zero. The results are compared to those available in the
literature. Furthermore, numerical aspects of the problem are discussed as

is a technique for determining a steering control.
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1, Introduction and Formulatjon. Consider the problem of steering the

state of a linear system

(s) (t) = A(E)x(c) + B(t)u(e); t € (e =) |

to the origin from a specified initial condition
x(to) = xo

by choice of control function u(:). Here x(t) € Rn, u(t) € R™ and A(+) and B(-)
are continuous uatricol’ of appropriate dimension. Unlike the usual controll-
ability problem where the control values at each instant of time are uncon-
strained, we insist here that the control values at each {nstant of time belong
to a prespecified set 0 in R™.

Let M ((.) denote the set of functions from R into {J that are measurable on

~

to.-). Then any control u(:) € M(Q) is termed admissible. We now define
three notions of constrained controllability or, more precisely, [i-null controll-

abilicy.

Definition l.l1. The linear system (S) is (-null controllable at (xo,to)
if, given the initial condition x(:o) - X there exists a control u(*) €M)
such that the solution x(:) of (S) satisfies x(t) = 0 for some t € fto.-).

Definition 1.2. The linear system (S) is globally (-null controllable

s

at ¢t 1if (S) is [i-null controllable at (x ,t ) for all x € Rn.

- "0 o' o o
Our major result will pertain to the global type of controllability. To

compare our results to those of previous researchers, we also need a local con-

trollability concept,

Definition 1.3, The linear system (S) is locally (i-null controllable at

t, if there exists an open set VC Rn, containing the origin, such that (S)

{s null controllable at (xo.to) for all X, € V.

‘Thta requirement can be weakened to local integrability.

.1.

y "““—'----uil
- . p
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The majority of constrained controllability results are for autonomous
systems, {.e., systems where A and B are constant. When 0 = R, Kalman 3
showed that a necessary and sufficient condition for global R™-null controll-
ability is rank(Q) = n where Q - CB,AB....,An‘IB:. Lee and Markus [2] com-
sidered constraint sets 0 < R® which contain u = 0 and showed that rank(Q) = n
is a necessary and sufficient condition for (S) to be locally (-null controllable.
Furthermore, {f each eigenvalue \ of A satisfies Re(h) < 0, then (S) is globally
f-null controllable. This result is typical of the results available when (i
contains the origin.

Saperstone and Yorke (3] were the first to eliminate the assumption that
zero is an interior point of [ when they considered problems with m = 1 and
O = fO,l:. Their result states that for these problems (S) is locally (Q-null
controllable {f and only if rank(Q) = n and A has no real eigenvalues. They
also extend this result to m > 1 and consider the m-fold product set [ = 3?{0,1:.
Problems with more general constraint sets were studied by Brammer [d: who
shcwed that if there exists a u € (] satisfying Bu = 0 and the convex hull of {
has i nonempty interior, then necessary and sufficient conditions for local
n-null controllability are rank(Q) = n and the nonexistence of a real eigen-
vector v of A' satisfying v'Bu £ 0 for all u € . In addition, if no eigen-
value of A has a positive real part then the theorem becomes one for global
O-null controllability. A similar result for global controllability when
O = 70,1] was obtained by Saperstone (5], Friedman [6] considers a linear
pursuit evasion problem where the target {s a closed convex set and gives a
sufficient condition for the existence of a pursuer control, based on the
evader's control, which drives the system from a specified initial condition
to the target.

For nonautonomous systems, the most familiar controllability result is that

of Kalman "1] when 0 = R®. He showed that (S) is R"-null controllable if and

only if W(t_ ,t,) is positive definite for some t, £ Cto.-) where

4 B - v -
S— ‘ NR——
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t

~
W(E,t) Q‘: 38, 7)B(r)B (1)8" (¢, ,7)dr

)
and 2(t,r) is the state transition matrix for (S). When the control is con-
strained, the major global results are those by Conti "7] and Pandolfi T8, 1In
:7:, Conti describes a "divergent integral condition” which is necessary and
sufficient for global (O-null comcrollability when I is the closed unit ball, In
order to make Conti's result more compatible with existing theory for time-
invariant systems, Pandolfi in :8: defines the notion of p-th characteristic
exponent for time varying systems, For the special case when the system is time-
invariant, the characteristic exponent turns out to be the real part of some
eigenvalue of A, Subsequently, controllability criteria are provided in terms
of this exponent.

The N-null controllability problem is also studied in papers by Dauer [9.,

T10], Chukwu and Gronski T11] and Chukwu and Silliman T12]. In order to decide

on the question of (l~controllability,one must test a certain growth condition

which involves searching a function space. In contrast, the results given here
are finite-dimensional in nature.

-

In T13],, Grantham and Vincent consider the problem of steering a nonlinear
system to a target. They present a technique for determining the boundary between
the set of states which can be steered to the target and those which cannot.
More recently, Murthy and Evans (147 obtained results comparable to [3]-[5] for
discrete linear systems and Pachter and Jacobson :15: developed sufficient con-
ditions for controllability for case where A(°) and B(:) are time-invariant and
5 is a closed convex cone containing the origin. A readable account of the
state of the art is contained in the book by Jacobson [16, Chapter i

In contrast to much of the work of previous authors, this paper concentrates

on the case where A(:) and B(*) are time-varying. Our results for global [i-null

controllability are for constraint sets 7 that are compact and contain zero




e

-a-

(but not necessarily as an interior point). One of our main results on global
S-null controllability i{s an extension of a theorem of Conti (7] and it degen-
erates to Conti's theorem when {i {s a unit ball.

Qur results for [-null controllability at (xo,:o) have even wider appli-
cability since they do not require 0 € (1. Neither do they require the existence

-~

of a u € 0 such that Bu = 0 as in 731-75, 77]-T12]. Thus we can analyze

controllability of a system with, for example, m = 1 and % = 71,2] whereas many
of the presently available theorems do not apply. Furthermore, as will be illus-
trated by examples, there are autonomous systems (S) which are neither globally
S-null controllable nor locally Q-null controllable but nevertheless are (-null
controllable at some (xo,to). Our theorem can be used to decompose the state
space into two sets. Initial states in one set can be steered to the origin

while those i{n the other cannot be driven to the origin by an admissible control.

2. Main Results. In order to describe our necessary and sufficient con-

ditions for global (i-null controllability, we make use of the support function

Ho: RT = RU {+ ®) on [ which for any o € R™ s given by
H (@) . sup{u'y 1w €0)

Using this notation, we have the following theorem, which is proven in Appendix A.

Theorem 2.1. Suppose [i is a compact set which contains zerot Then, (S) is

globally C-null controllable at to if and only {f

’.
(2.1) R (B'(r)z(r))dr =+ @

t
(]

for all non-zero solutions z(-) of the adjoint svstem

(s") $(t) = -A'"(t)z(t); t € [co.-) ’

‘Thc theorem {s also valid if the requirement "0 € (i i{s replaced with '"there
exists a u € [ such that Bu = 0", This type of assumption is used by Brammer [47,




or equivalently, if and only if

-
sup{s'B'(r)e' (£ ,T)h: » €Qldr = + »

o

for all 1\ € R™, 1\ # 0.
We note that H.(B'(r)z(r)) can be viewed as the composition of a non-
negative Baire function with a measurable function. Hence, the integral in (2.1)

is well defined along all trajectories z(:) of (S).

In the following corollary, we examine the special case of Theorem 2.1
which arises under the strengthened hypothesis '"zero is an interior point of

-~ "

Qe As we might anticipate, for this special case, the structure of the set
2 will not matter other than the requirement that it contains zero in its
interior.

Corollarvy 2.2, (See Appendix A for proof): Sunpose there exists a com-

pact set O such chat

(1) Zero is an interior point of 7;

(i1) (S) is globally D-null controllable.

~ -~

Then (S) is also globally Q\'-null controllable for anv other set ' (not neces-

sarily compact) which contains zero in {ts interior.

Our proof of Theorem 2,]1 will make use of a more fundamental result (also
proven in Appendix A) giving conditions for (-null controllability at a fixed
initial epoch (xo,to). To meet this end, we define the scalar function

J:R™x Rx R" < R by

.T
(2.,2) I(x,T0) . 12 (T,e % + | R (B (1)e " (T,m)0)dr
- t .‘
(o]




.6-

We note that J(xo,T,X) can be viewed as the support function on the so-called

attainable set, This fact is used implicitly in the proof of the next theorem,

Theorem 2.3. Let [ be a compact set. Pick any subset /. of R" which contains

0 as an interior point. Then (S) is l-null controllable at (xo,t ) i{f and only if

0 — — —— —

(2.3) min{J(xo,T,k) : A €AY =0

for some T € fto,a), or equivalently, if and onlv if,
)

—

(2.4) J(xo,T,k) 20 or a . € A

Comment. If [ {s also convex and A and 3 are constant, the sufficiency

portion of this theorem is just a special case of Theorem 7.2,1 of [6:.
Naturally, the smallest time T for which (2.3) holds will be the minimum arrival
Ltime at the origin.

Theorem 2.3 can also be stated in terms of the adjoint system (S'), {.e.,
{f we take . = R and notice that z(t) = 2'(t°,t)z(to) is the response of the
adjoint system (S'), then the following theorem is easily proven, (The proof is
established by making the change of variables z(t) A B (T, 00).

Theorem 2.3'. Let 0 satisfy the hvpothesis of Theorem 2.3. Then (S) is

a-null controllable at (xo,co) ii and only iﬁ there exists some T € :to,ﬂ) such
that
aT
(2.5) x'z(t )+ ' H.(B'(r)z(r))dr 2 0
o o ‘e o
0

for all solutions z(:) of (S').

This theorem demonstrates that the question of [i-null controllability at
(xo,co) can be answered by solving a finite dimensional optimization problem,
Moreover, the question of global [j-null controllability can also be answered

via a finite dimensional optimization problem,




Corollary 2.4. Let 0 and A be as in Theorem 2.3, Then (S) is glohally

s a time

G-null controllable at to if and only if for every X € R" there

T € Tt_,») such that
=T —_———

min{J(xo,Tx A) : A €A} =0
o]

The proof of this corollary follows from Theorem 2.3 in conjunction with

the definition of global ll-null controllabilicy.

~

There is one point worth noting. In using Theorem 2.1 to check for (l-null
controllability at Ty 7. must be compact and contain 0. If Corollary 2.4 is
used, only the compactness assumption must be satisfied,

Next, we present some examples to illustrate how our theorems can be
applied and to compare our results to those of [3-5,

Example 1, Let x(t) and u(t) be scalars and suppose (S) i{s described by

(t) = x(t) + u(e) , t € (0,m)

1 -
This system is Rl-null controllable {f [ = R"., But suppose = [0,1,. Then the

system i{s not globally (-null controllable at e 0. This follows from
w \
H-(B'(T)!(T);d? < + =,

- .

0
Also, using 73: or té: {t can be shown that the system is not locally (-null

Theorem 2.1 si{nce, for z < 0, H.(B'(v)2(+)) = 0 and thus

controllable. Nevertheless, there do exist (nitial states X from which {t is
possible to steer the system to the origin. Such states can be determined via
Theorem 2.3.

For the above

; ¢ o7 Ter
J(x ,T,A) = x e + | sup{we’ A :w € 70,1]%dr
o

When ! = "-1,1], this becomes

X e ) A< 0
o

J(XO.T.X) -
xocT\ - 1(cr- 1) x>0

-




and thus
min{J(xo,T,l) L€ T-1,10V = 0

if and only {f X, < 0 and x, 2 Q-T_ 1 for some T € T0,»), or equivalently, if
and only {f -1 < x, S 0. We conclude that even though (S) is not locally (i-null

-

controllable, it {s 7-null controllable at (xo,O) whenever -1 < X, s 0.

If 0 = 71,27, neither 73-5] nor Theorem 2.l apply. However, we can use

. Theorem 2.3. Since

2T x>0

a:O'hﬁcWTn)l)- -JT")

J(XO.T.k) becomes

xocI\ + Zl(cr- 1) >0
J(x_,;T,A) =
- T, T
x e + i(e = 1) » s 0

and

nin(J(xo.r.x) :x €[-1,101 =0

: 4 p 3

- 1) g x, % e ‘- 1. Thus (S).with O

{f and only {f 2(e” r1,22,is G-null con-
trollable at (xo.O) whenever -2 < x, s 0.

As a final variation of this problem,suppose [, = (-a,a.. Then [4] or
Theorem 2.1, shows that (S) is not globally [l-null controllable. Using [6],
{t can be demonstrated that (S) is locally (i-null controllable while Theorem 2.3
not only tells us that (S) is locally f-null controllable but also that the states
X, which can be steered to the origin are those satisfying -a < X < a.

txample 2. Our second example illustrates the application of Theorem 2.1

for a nonautonomous svstem, We consider the time-varying two-dimemsional system

(S) described by

A i it B o i et S

P s el PO




il(t) = y(t)sint

1
2y (t) = - ?::I;I x,(t) + u(c)esine, ¢t € [0,m)

The control constraint set is taken to be [ = Co.l:. By a straightforward com-

putation, the state transition matrix for the adjoint system (S') is found to be

[ e
| § Qe 2 : |
‘ (e+1) (e +1) |

1

|
2u(tit) = | I
b

Hence, in accordance with Theorem 2.1, (S) is globally (i-null controllable at
e, 0 {f and only (£

r 1
T {
'- Tx] %01 |
sup i w[stu T rvrsin v} ¥ | dr = + =
“o w€f0,1] Lo 1 J |

Loz |

A -
for all non-ze-c initial conditions z_® 72 ; Evaluating above, this

LX) o -%o1 %02« °

reduces to the requirmment that

| - > -
2.6) I(r)de | max O.zo1 sin v + z,, 7 sinT(l + ;:T)_ dr = + =

-

o o

for all zo 2 0, We shall show that this condi{tion is indeed satisfied.

Case 1. 29, £ 0, 29 * 0. For this case, we have

P -
[ I(r)dr = max/0, 25, $in +dr
‘o ‘o
»
- :’ 101 sin v dr
i
where 31 e fv+ 2 0: 251 sin v > 0). Because the range set 31 of integration is
g the union of {nfinitely many {ntervals of length =, {t follows that
e
| I(t)dr @= s @
v
o




o 05

|201\ + 1

: Then to verify
02

: «
Case 2. g ™ anything, 297 * 0. Lec T &

(2.68), it sufficies to show that

I(r)dr » + =
.:z
. w
where 32 =t 2T: 25 a1 > 0'. (Recall that the integrand is non-negative.)

Now, for r € J,, we notice that the integrand I(r) can be bounded from below as

follows:
25,880 7 + 2.7 sin v(l - :éT: > ‘z°2||sin T‘T(l + ;éT; - 1z01||sin |
2 <|:023 - -1101|?||in vl
2 (1202‘ T*-'zOI‘Tlsin +!
= lsin v|
Hence,

-~

I(r)dr 2 fsin 7]|dr = + =
'3 k7!
because the range of integration is once again the union of i{nfinitely many

intervals of length ~.

We conclude that (S) {s globally 7-null controllable.

. Relationship with Other Controllability Results. In this section, we

compare our controllability results with those of Conti T7] and Brammer [4]. We
also consider, as a limiting case of our theory, the usual controllability problem

obtained when magnitude constraints are not present,

~

Result of Conti. An important special case of Theorem 2.1 occurs when [l is

a closed unit dall in R‘, i.e.,
f'."{wGRa:'x;.‘ﬂ

where * 13 a prespecified norm on R™. For this situation we have




it

¥

=5 s e

Ho(B'(r)2(r)) = sup{u'B'(r)z(r) : [luil s 1) =« 1B (m)z(r)l,

where ' -'_ is the norm on R which {s dual to |.!. (For example | is the

s* sorm whea |l ] is the 4 norm; ! and '/ coincide when |-/ is the usual

12 (Euclidean) norm.)

B8y Theorem 2.1, we conclude that (S) is globally (i-null controllable at

t, if and only {f

..- ]
(3.1) B'(m)z(r) dr =+ =

t
o

for all non-zero solutions z(*) of (S'). This result is established indepen-

dently in Conti 77 and also discussed in Pandolfi [8]. This result, in con-

junction with Corollary 2.2 leads i{mmediately to the following Proposition.

Proposition 3.1. Let 0l be anv set containing zero in its interior. Then

(3.1) is a necessarv and sufficient condition for Zlobal (-null controllability.

Thus, Conti’'s condition {s a necessary and sufficient condition for global

Genull controllability for any set (I containing zero in its interior, not just

when | is the closed unit ball.

Result of Brammer. Consider the case when A(t) ® A and B(t) m B are time-

fnvariant. For these autonomous problems, the following necessary conditions

n-1
can be obtained directly from Theorem 2.1. Recall that Q = (B,AB,....,A 'B]

Theorem 3.2. Assume A(t) ® A and B(t) ® B are time-invariant and that

-~

7 is a compact set which contains the origin. If (S) is globally 0-null com-

frollable then

(1) rank (Q) = n

(1%) there is no real eigenvector v of A' satisfving v'Bw < 0 for all ¢ € .

(t14) no eigenvalue of A has a positive real part.

The proof of this result i{s in Appendix B.

Gh e T s i ot
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In 4], Brammer has obtained the same result using a different method of
proof. There, he also shows that the above three conditions are also sufficient
for global (i-null controllability in the time invariant case if it is also
assumed that the convex hull of Q) has a non-empty interior. Alternmative proofs
of the sufficiency result have been given by Heymann and Stern 725] and Hajek.
The latter proof is in 75).

We note that the system of Example 1 of Section 2 does not satisfy these

three conditions. Nevertheless, it {s -null controllable at (xo,O) for some

initial states xo.

The Case =R™. When 0=R”, it is well known 717, p. 171] that the time-
varying system (S) is completely controllable (globally R%-null controllable at
co in our notation) if and only 1f the rows of :(t°,~)8(-) are linearly indepen-
dent on some bounded interval tto,T:. Here we show that when :-Rm, equation (2.1)
{s a necessary and sufficient condition for global R™-null controllability. This
is accomplished by showing that (2.1) is equivalent to the rows of e(to.-)B(°)

being linearly independent on some bounded interval fto.T..

Proposition 3.3. (S) is globally R™-null controllable if and only if
o0

R _(8'(r)z(r) Jdr = + =

-
o

for all non-zero solutions z(-) of (§').

.

The proof of this result is in Appendix B.

4, Some Computational Aspects. In a large number of problems, one may

; have to resort to the computer to check whether or not a system i{s (l-null comn-

trollable. When using equation (2.3), a solution of the minimization problem

min{J(xo,T.k): % € A {s needed. Direct application of so-called gradient or
descent algorithms to compute nln{J(xo.r.k): i € 1) is precluded by the fact

that J(xo.T.k) is in general not differentiable in *. This fact is a consequence
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of the sup operation involved in the definition of Hﬁ(B'(T)Q'(T,T)k). Fortunately,
however, numerical computation of min(J(xo.T,k): A €AY is feasible if '"generalized
steepest descent'' schemes are used. These schemes rely on subdifferential* rather
than gradient information. The next two lemmas develop a description of the sub-

differential of J(xo,r.k). The proofs are given in Appendix C.

Lemma 4.1. For fixed (xo.T) € R® x R, J(xo.T,k) is a lower semicontinuous

D i s - c——

convex function of \.

Lemma 4.2. For fixed (xo,T) € R" x R, the subdi{fferential of J(xo,r.') at

\ € R® consists of all vectors )\ € R" of the form

T

4.1) Ae = 2(Tye )%, + | 2(T,7)B(r)w,(r)dr
to

where

(4.2) s, (r) € arg max{w'B'(r)o'(T,7)) : o €O}

«{w €0 : w'B3'(r)e'(T,r)h 27 B ' (v)0'(T,r)r ¥ 1 €0}

for almost all r € 70,T].

Remark. Since J(xo,T.X) i{s the support function on the attainable set (see
discussion preceding Theorem 2.3), a geometric interpretation of the subdifferential
at ) is available: This get consists of all vectors in the normal cone to the
attainable set at ). (See Goodman 724, p. 285]).

Formulae (4.1) and (4.2) hold for arbitrary compact-convex (i, Often however,
more structural i{nformation is known about (i, In such cases, (4.1) and (4.2) may

simplify. To illustrate, suppose

P
A, € BJ(xo.T.\). the subdifferential of J(xo,T.') at 3, if and only {f

J(x,T,2) 2 J(x,T)) + (2 =), for all z €R" .
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G el ] - 1 ¢ 1
Qo DMy M DX DMy Myl X L X DM ML M > 0)
Then, the maximum in (4.2) i{s achieved in the lth component by

lu, )], €M sgnlB' ()2 (T,rN] ;1= 1,2,...,m

where sgn x ) 1 1f x> 0; sgn x s -1 if x< 0; sgn O & f-1,1]. Consequently, for
this case, we can substitute into (4.l1) and show that the subdifferential

3J(x°.T,X) consists of all vectors Ao € R® of the form

T m
P
(4.3) A, = ¢(T,0)x_+ Z Mh (T,r)sgn \'h, (T,r)dr
o Y i , S ¢ 4

th column of H(T,r) " ¢(T,7)B(r). This description of the

where hl(T.f) is cthe 1
subdifferentials of J(xo,T,') can be used {n conjunction with the generalized
steepest descent algorithms to compute min{J(xo.T.k): A €AY

We also note that ) {s uniquely specified by (4.3) {f

*
measure(rt : l'hi(T,r) «0) =« 0 for b ow ] B el

For such i, 3J(x°.r.l) is precisely v\J(xo.T,x), the gradient of J(xo.r,-) at i,

5. The Steering Control. Using the results of Section 2, we can determine

if (S) is N-null controllable. However, those results do not give a method for
determining a steering control u, () € M(Q) which accomplishes this objective.
One method of determining an appropriate u,(:) is to solve the time optimal
control problem, i.e., find u (:) € M ({) which steers (S) from given (xo.to) to
the origin and does so in minimum time. If there is a control which steers the
system to the origin, then there {s a time optimal one fZ]. Hence, in principle,
a steering control can be numerically computed using any of a wide variety of
algorithms which are available for solution of the time optimal control problem.
Since the solution of the time optimal problem is determined by solving a

two point boundary value problem, it can be quite difficult to cbtain the steer-

ing control this way. In this section, a "simpler" alternative method for
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generating a steering control is presented. This technique does not involve a
two point boundary value problem and leads to a control which steers the system
arbitrarily close to the origin. Our result is obtained from the following
zinimum norm problcn:* Given initial point (xo,to) and a final time T, find i
u(*) € M) which leads to the smallest value of |x(T)!. The solution of this

minimum norm problem is characterized in the next theorem,

Theorem 5.1. (See Appendix D for proof). Let (xo,to) and T be given.

n
Suppose that \ € R achieves the minimum of J(xo.r,x) over the closed unit ball.

Then anv solution of the minimum norm problem satisfies

(5.1) u,(r) € arg max{w'B'(r)0'(T,T)A, : » € Q}

or almost all r € t:o,T:.

We note that condition (5.1) will uniquely determine u () whenever the
ainimum of w'3'(r)¢'(T,r)r, {s uniquely achieved., For example, suppose

a s 9 = 9
Q=7 MM X [ MMyl X oo X DM M 0 (M > 0)
Then (5.1) requires
(5.2) Cu ()], € MysgnlB' (e (TN I, , Lt =1,2,...,m.

For the case when the minimum of !x(T)| = 0, A, = 0 and (5.1) will not
determine a control which steers (S) to the origin. The following heuristic
procedure can be used to determine a control which steers (S) arbitrar{ly close
to the origin: Choose a T such that the minimum of | x(T)! is nonzero. As T is

{ncreased, the minimum of ! x(T)| approaches zero and the corresponding solution

u,(*), generated via (5.2), of the minimum norm problem results in a control

g which steers the system progressively closer to the origin. i

.(S) here is required to be R™-null controllable,

PR £ . . —
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In our next theorem, we provide another useful characterization of steering

s i

controls. For fixed T € [0,m), x_ € R", we define the functional V! R®xm@) - R

by
ol -s
V.r(\.u(‘)) -2 (T,0)x_ + A'e (T,7)B(r)u(r)dr :
o ‘0 :

Theorem 5.2. (See Appendix D for proof). Pick any compact convex set /\ com-

taining zero as an interior point. Thenm Vr(l,u(°)) possesses at least one saddle

point (A ,u (")) € A X M(Q). Moreover,u, (:) steers x to zero at time T if and

only {if Vr(l*,u*(-)) =0,
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6. Additional Applications. In this section, we use our results to obtain

an existence theorem for the time optimal control problem and also apply our
results to a pursuit game.

Existence of Time Optimal Controls. Consider the following time optimal
control problem: Find u(:) € W (Q) which drives the state x(*) of (S) from an
initial position x(to) = xo to the origin and minimizes

R

Clu(+)) = | 48 ; ¢

t
o

: ™ arrival time at the origin.

The classical theorem for existence of a time optimal control (e.g., Lee and
Markus [2]) requires that there i{s ac least onme control which transfers the

state x(*) of (S) to the origin. Combining the result of (2] with our Theorem 2.3,
we obtain the following existence lemma.

Lemma 6.1. There exists a solution to the time optimal control problem lﬁ

and only if there is some finite t, € [t ,») such that
uin{J(xo,cf,X) : A €AY = 0 ,

Furthermore, the time optimal cost is given by

C*(u,(')) = min(tf : min[J(xo,tf,l,) . %\ € 1\: =« 0} g

Pursuit Games. Next, we consider the pursuit game studied by Hajek (18],

The system is described by
(6.1) x(t) = Ax(t) = p(t) + q(t) ; p(t) € P, q(t) € Q x(to) -

where P and Q are compact convex subsets of Rn. The pursuer p(*) seeks a
strategy ¢ : QX [to,-) < P which steers x(.) to the origin for all possible
quarry controls q(-) : fto.-) < Q. A quarry control is admissible if it is

measurable and a strategy is admissible L{f c(-) preserves measurability.




- 18 -

In (18], a solution to this problem is obtained in terms of the associated

control system

(6.2) F(E) = Ay(e) = u(t) ; w(e) € B - Q; y(e) = x_
where P . Q is the Pontryagin difference. 1{.e.,
P Qi (xer”: x+qcP)

Admissible controls u(:) above must be measurable.
Simply put, Hajek's result says that the state x(-) of (6.1) can be forced
to the origin, for all admissible q(-), if and only if the state y(-) of (6.2)
can be steered to the origin. More precisely, the following theorem is available.

First Reciprocity Theorem [18]. Initial position x  in (6.1) can be

(stroboscopically) forced to the origin at time T 2 :o by a strategy -(*) if

and only if, x in (6.2) can be steered to the origin at time T by an admissible

control u(-). Furthermore, <(-) and u(*) are related by
(6.3) c(q,t) = u(t) + q

3y applying Theorem 2.3 to (6.2), we obtain another condition for deter-

mining {f (6.1) can be forced to the origin.

*
Lemma 6.2. Assume P - Q compact. Pick any subset )\ of R" containing zero

as an interior point. Then x, in (6.1) can be forced to the origin at time
T >t by astrategy o(*) if and only if

nin{x(xo,T.k) t A €AV =D
where

A'(T - to) T

K(x,T,0) 8 x’e hel Hpgg(et T Thyer
o
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It should be pointed out that in addition to pursuit game interpretation
of (6.1), (6.1) can also be viewed as a problem of steering a system with dis-
turbances to the origin if q(-) is thought of as a disturbance. Also, the results

apply to systems described by
(t) = Ax(t) + Bp(t) + Cq(t) ; p(t) € P , q(t) €Q

if one replaces 3p(t) by p'(t), Cq(t) by -q'(t), P by BP and Q by CQ.
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APPENDIX A

Proof of Theorems 2.1, 2.3 and Corollarvy 2.2. Since Theorem 2.3 is used in the

proof of Theorem 2.1, we first present the proof of Theorem 2,3, There are many
ways to prove Theorem 2.3; our proof exploits the convexity of the attainable set
in conjunction with a measurable selection theorem. We note that a proof of the
sufficiency part of the theorem is given in (6, Theorem 7.2.17. To simplify our
notation,we henceforth take co- 0 without loss of generality. This will apply

to subsequent appendices as well,

Proof of Theorem 2.3, Let AT(xo) be the set of states which can be attained

from xo at time T, i.e.,

3 3 .
(A.1D) Ag(x)) = {o(T,0)x  + | 2(T,1)B(r)ulr)dr : u(*) €M) .

o

The set AT(xo) {s convex and compact "2]. From Def. 1.1, it follows that x  can

be steered to O at time T {f and only {f 0€ AT(xo) or, equivalently, by the Separating

Hyerplane Theorem (21,

(A.2) 0 € sup<i\'a: .eAT(xo),'

for all vectors \ € R". Using (A.l), requirement (A.2) becomes
e aT .
(a.3) V2T, 0x  + supt | A'R(Tyr)B(r)u(r)dr : u(-) ER () 20
o J
for all \ € R, As a consequence of the measurable selection theory of ri9l, we

>
can commute the supremum and integral operations in (A.3) . Thus, 0 € AT(xo) if

and only if

T
(A.&) 0% A's(T,00x  + | H.(B'(r)2"(T,r))dr = J(x ,T,})
.o e
for all 1 € R". Since J(xo,r,k) {s positively homogeneous in i, we can
restrict % to M {n (A.4). Theorem 2.3 now follows, -

' 2(T,r) 8(r) being a Cartheodory function enables us to apply the results of ris;.
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Next, we present the proof of Theorem 2.l. In the proof, Theorem 2.3 is
used.

Proof of Theorem 2.1 (Necessity): We suppose chat (S) is globally [-null

controllable at € 0. Let z(:) be any non-zero solution of (S'); we must
prove that
&

(A.5) E.}(B'(T)Z(T))df - +m®
~° .

Proceeding by contradiction, suppose there is a non-zero solution Z(-) such that

H.(B'(r)2(1))dr =2 , a < =
‘O e
Then there (s a positive constant 3 < = such that
&
H.(B'(r)3(r))dr < =
o 4

Define
S8 R i HO
° 3 (020 »
We now claim that x: cannot be steered to zero by an admissible control

u(*) €T(0). To prove our claim, for each t € T0,»), define

e 220,020 ; A, %0

Now, given any t € (0,»),
i *ia 0 # B' ' A_)d
- -
J(Xo.t.Kt) R o' (e, )lt ‘OHS( (r)e'(e,r) t) T

* -t
- xo'um - | &‘(B'(ﬂi(«'))d*
oF

€ =23 4+ &

<0 ,




B
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Taking A = R" i{n Theorem 2.3, it follows that

* *
utn(J(xo,c,x) b O A I J(x ,t,0.) <0

*
for all t € T0,»). By Theorem 2.3, (S) is not (i-null controllable at (xo,O). O
(Sufficiency): Now, we assume that (A.5) holds., Again, we proceed by con-
tradiction, 1i.e., suppose (S) is not globally (i-null controllable at to- Q.
Hence, there exists an i{nitial condition x: # 0 which cannot be steered to zero.
3y Theorem 2.3 (with )\ = Rn). we can find a sequence of times (tk\;-l and a

sequence of vectors ’\k\:_l having the following properties:

Fl. lim ck-d--;

K==

*
"
p2. J(xo’tk'\k) <€ 0 for k= 1,2,3...

We are going to construct an initi{al condition !o 2 0 for (S') which makes the
integral i{n (A.5) finite. To meet this end, let
d (Ck.o)ik

lk..‘l l = M k-l|2'000 M
R ORI L

We note that each z, above {s non-zero because xk # 0 and :(tk.O) is {nvertible.

Then ,zk\:-l {s a sequence in R" belonging to the set

s@(zer" 2 «1) .,

Since S i{s compact, we can extract a subsequence (zk 3}_1 which converges to
J
some vector !o € S, We will now show that !o {s the initial condition which

we seek., Let Z(+) be the trajectory of (S') generated by z(0) . ?o; let (tk 3;_1
J

N T— ) P TR

e e e e
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denote the subsequence of times corresponding to (zk \:_1 . By Pl, we have

lim tk -+ @
J

=

and by P2, it follows that
th
- ~
xo.a'(t‘k ,O)\k - | a::(at(f)°|(tk 'T)kk Yér < 0 -fo_r j = 156 . FEPRE
b ] o b b
Dividing by ":'(tk O, ! and noting that H. is positively homogeneous, we
‘ .

b b|
obtain

*,

B

B (B ()0’ (0,1)z, ddr & 1x) Iz, | for §=1,2,3,...
o 9] o k —
° 3 3
sllxY for §e1,2,3,...
o r——

We would like to obtain an inequality involving ?o with an infinite upper limit

on this integral. To accomplish this,6 we define

| £, @ . L@ Omin ) 1f T €05 1

B
® 0 otherwise; = 1,2,3,...;

£(r) BH.(B' (1) (0,1)F ) ; 1 € [0,

and make the following observations:
- -
(1) £y (r)dr is bounded (by xa') for § = 1,2,3,...
- ° J

(11) fk (r) converges pointwise to £f(r) on [0,=). This observation is

J
proven using the facts that z

-z, t,

J J

" 4+ + = and H. depends con-

tinuously on {ts argument,
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Applying Fatou's Lemma (20, p. 83],we have

E P‘
f(r)dr < 1{m inf | fk (T )dr
‘o j=-m 0}
-

< 1im Sup ' fk (1 )d~r
J-O-‘Oj

Y

Substitution for f£(r) above gives
Pl .
B.(B'(r)e'(0,r)Z )dr s 'x |
° e Qo o}
i.e.,

v - Y
B (8" (1)F(r))dr s | x)
o

< =

which {s the contradiction that we seek. This completes the proof of the theorem. _
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Proof of Corollarv 2.2. Suppose [, and [.' satisfy the hypotheses of the

corollary. We are going to show that (S) is globally J'-null controllable. To

prove this, {t {s sufficient to find a subset Sg S 3' such that (S) is globally

Oe-null controllable: Pick & > 0 such that

‘8
Ga'“{w: w g8l

(This can be accomplished because zero i{s interior to 3'.)

ﬁg has the desired property, we pick R > 0 such that
fg @ (w: ol €R) 20

(This can also be done since [, is compact, hence bounded.)

Now, to prove that

Let z(*) be any
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non-zero solution of (S'). Then we have

= & .
Ho, (B'(t)z(r))dr = sup{uw'B'(r)z(r) : 'w s 8dr
‘o '8 “o
r :
=8 UB'(r)z(r) dr
‘o
A P
3. RB'@mzm)ar
‘o
s ™ e
-3 sup{w'B'(r)2(r): |lwl] s Rldr
]
s
=z, B (B'()z@)dr
o Ty
- 4 @®

since (S) is globally .".R-null controllable, (:“R-nul.l controllability follows from
Genull controllability in conjunction with the fact that .‘.R 2 4.) By Theorem 2.1,
we conclude that (S) must be globally :‘.a' -null contrcllable and hence {i'-null con-

trollable. -




§
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APPENDIX B

Proof of Theorem 3.2, (i): This condition follows immediately from the fact
that global R™-null controllability i{s necessary for global (i-null controllability.
It is also possible to prove (i) directly from Theorem 2.1. Suppose (S) is
globally Q-null controllable but rank (Q) < n. Then there exists a v € Rn. v #0,
such that B'e™ ' % « 0 for all t 2 0. Let 2(0) = v. Then 2(r) = A" % and
> ' & -A't
. sup W'B'z(v))dr = | suyp (w'B'e v)dr = 0
"o w€ D "o w€ G
which contradicts Theorem 2.1,

(11): Suppose (S) is globally (-null controllable but there exists a real eigen-

vector v of A' satisfying w'B'v € 0 for all € I, Denoting by % the real eigen-

value associated with v, we have o2 % o oM. With 2(0) = v,z(r) = A Ty a My
and
,‘. = A
sup (@'B'z(r)dr =  sup (u'B'e v)dr
Yo w€ 0 ‘o w€
< ar
- | e sup (w'B'v)dr
Yo o€ O
At

Now this integral is less than or equal to zero since sup (w'B'v) < 0O and ¢ '~ 2 0,

@€ O
This contradicts Theorem 2.1,
(i11): Again the proof is by contradiction. Assume (S) is globally [-null con-
trollable but A has an eigenvalue i with a positive real part. Then ) is also an

eigenvalue of A' so that A'v = i\v where v {s an eigenvector corresponding to A'.

Let | and v denote the complex conjugate of 3 and v, They satisfy Av = iV, Hence,

C.A tv - cktv and ..A :5 = .“6

Consider the solution of the adjoint equation corresponding to the initial con-

dition 2(0) = v + v, (Note that 2(0) is real.) For this 2(0)
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sup (W'B'z(v)) = sup (m'B'c'A"(v + ;))
w €N w €Q

rm'B'(o'ltv + o~ )

b B \ /2

u
w€N
= sup Im'!'e":CZm cos bt + 2n sin btg}
w€Qn ¥
where a and b are the real part and imaginary part of % and n and m are the real
part and imaginary part of v, Let M e sup sup @'B'T2n cos bt + 2n sin bt].
t20 w€Q :
M is finite since N is compact, i.e., M < 2 max{|n|,|m|) 8| sup !wl. Thus
w €N 3

sup (wW'B'z(r)) < Me 8¢

w €N
and
) -
sup (@'B'z(r))dr s M e 2%de
‘ow €Q ‘o

The integral on the right is finite since a > 0 and we have a contradiction to

L)

Theorem 2.1.

Proof of Proposition 3.3. (Necessity): Suppose (S) is globally R™-null

controllable., Then there is a finite interval {O,T] on which the rows of
2(0,*)B(*) are linearly independent. Thus, for every non-zero vector z, € Rn,

it follows that B'(t)o'(o.t):° # 0 for some t € [0,T]. Since, B'(-)c'(0,°)z°

{s continuous, there must be an interval I = Tt - &,t + &] on which

B'(‘r)c'(o.v)z° £ 0 for all v+ € I. On this interval, we have

: suplw B'(t)a'(O.f)zo fw ERM a4

Hence, using the non-negativity of Hz(-), we conclude that

-

PR i

4 H ﬂ(B'(v)z(v))d'r 2 f H ﬂ("(f)€'(0,?)l°)df

oR IR
- I sup{w'l’(v)c'(o,f)zo tw € RFﬁdT
e
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(Sufficiency): Proceeding by contradiction, we suppose that for all non-zero
solutions z(+) of (S'), we have

r.

'H _(B'(r)z(t))dr = + =
. m

oR

but the columns of B'(*)¢'(0,*) are linearly dependent on every bounded interval
{0,T). Let (Tn):_l be a monotone increasing sequence of times such that Tn - >,
Then, for each n, we can find a non-zero vector ?n such that 3'(1)@'(0,7)?n s 0

on rO,Tn:. Let

z b2 for a=1.2....

Then, {zn\:-l is a sequence in the (compact) unit ball., Hence, we can extract a
subsequence z_ converging to some 20,"2;’ = 1, We notice that the corresponding
J
& subsequence of times Tn still converges to + =, Furthermore, for each fixed
J

+ € T0,»), we have

B'(+)2'(0,7)2 = 1lim B'(r)e'(0,r)z
(o] n
jow b

=0

Consequently, {f 2(r) is the trajectory mate of 20,

-~ L
R (3" (1)2(r))dre sup{a'B'(1)8'(0,1)% : « € RMdr = 0
‘o R ‘o

1]

which contradicts the assumed hypothesis.

R
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APPENDIX C
Proof of Lemma 4,l1. For (xo,‘r) fixed, J(xo.‘r,k) can be expressed as

J(x,T,A) = sup{H (W) : w(*) €M@))
where
o
B0 8 1'a(T,0x +  A'a(T,m B (r)dr .
o
Consequently, J(xo,r,-) {s the pointwise supremum over an indexed collection of

continuous linear (hence convex) functions. Hence J(xo.‘r.v) itself must be con-

vex and at least lower semicontinuous (in fact, continuous). C

Proof of Lemma 4.,2. We prove this lemma using some of the standard prop-
erties of subdifferentials given in Rockafellar [21:, (223. Since both functions

in the definition of J(xc,T,k) are finite and convex,) € BJ(xo,T,k) if and only

1f
PT
Ae €3 (x2'(T,00) +3  H(B'(r)e'(T,7)A)dv (by Theorem 23.8 of [22])
o' :
o1
= 2(T,00x_ + ' AHL(B'(r)8' (T,7)r)dr (by Theorem 23 of [22])
o
."T -
=o(T,0x ¢ (TOBEI@ODg 0 ap (rre (1,00

o
(by Theorem 23,9 of [21])

Now, by Corollary 23.5.3 of (211, w,(r) € 2H,(@(r)) 1if and only if
w,(r) € arg max{w'S(r) : w € 0). Substituting the required form for & above, we

obtain our desired representation for i,. Q
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APPENDIX D

Sketch of a Proof of Theorem 5.1. Let £ : L'(0,T;R®) = R, g : R® = R,
AT $ Ll(O,T;RP) + R” be given by
£(u) ® 0 if u(-) ENREQ) ; £(u) ® + » otherwise ;

82 8 - la(r,ox, + 2l i zes";

T
Ao 8 a(T,mB(Mudr
o
Then, using the notation above
tnf o) & {nf{lx(T)] : u(+) €n))

= nf(£(u) -g(Ap) : u € tto, ;8™ .

Written i{n this way, inf(MN) i{s in the standard form for application of
Rockafellar's extension of Fenchel's Duality Theorem (cf., (23], Theorem 1). The
functionals f and g are respectively proper convex and concave functions; it can
be easily shown that {nf(MN) {s "s:nbly.set" -- a technical precondition for

Rockafellar's Theorem,

By carrying out the computations involved in Theorem 1 of 723], it can be
shown that the problem
*4
min (MN) nin{J(xo,T.l) : €A}
is dual to inf(MN) in the following sense:
*
{nf(MN) + min(MN) =0 .,

The "extremality condition" in Rockafellar's theorem provides a necessary con-
*
dition which must be satisfied by all solution pairs )\, solving (MN) and u,(*)

solving (MN). This extremality condition requires




.
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hphy € 2£(u)
»*

where .‘..r is the adjoint of AT

our choice of £, this necessary condition particularizes to

and 3f(u,) is the subdifferential of f at u,. For

A @P(T,r)B(r) € (Normal come of M () at u,(:))

_He denote this normal cone at u_ by Nc(u.). By definition of the normal cone, we
have v(-) € xc(u") {f and only {f
e 3

up(r)B' (1) ' (T,r)a dr =  sup{w'B'(r)2'(T,7)A, : w € Oldr .
o * 9

This is possible only if u = u_(v) achieves the supremum of «'B'(r)e' (T, 7)),

for almost all r € T0,T]. Equivalently, we must have
u (r) € arg max{w'B'(r)2"'(T,T)\, : w €0}
for almost all r € [0,T].

Proof of Theorem 5.2. As in the proof of Theorem 2.3, let ﬁ(xo) be the set

of states which can be attained from X, at time T. We recall that this set is

compact and convex, Define U_r t A X I\r(xo) < R by
4
(D.1) HT(X.D ® AL .

In accordance with Proposition 2.3 of (19, p. 1711, HT(\.D will possess a saddle
point because the following conditions are satisfied:

R (D.2.1) For all \ € A,W(A,*) is concave and upper semicontinuous.

(D.2.2) For all g @.(ﬂ), W(+,%) is convex and lower semicontinuous.

Since wro..g) possesses a saddle point, we note that

min max Vo0,u(+)) = min max W, (,8)
A& u()ER@ ren  geAL(x)
Furthermore,
max ain V,r(l.u(-)) = max min H.t()‘.!) .

u(*)EN (L) €A !ﬁ&r(xo) AEA
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These equalities, in conjunction with the fact that HT possesses a saddle point,

imply that V_ also has a saddle point.

T
To prove the last part of the theorem, we take (x*.u*(')) to be a given
saddle point of vr(x,u(')). Hence we have

(D.3) V.O,u,(+)) = amin max v.(,u(:)) .
R \€A u()EmM@) T

Using a measurable selection argument, as in the proof of Theorem 2.3, it is
also apparent that
(D.%) min max VT(X,u(')) = min J(xo,T,k)

A€A u(*)EM(Q) €A

From (D.3) and (D.4) we conclude that

(D.5) Voig,u,(¢)) » min J(x_ ,T,N) .
TV Y vriehE

From Theorem 2.3 and the comments following the theorem, we know that x, can

be steered to zero at time T if and only {f

0 = min J(x_,T,))
S

= Va(,.u, () (by (D.5).

-
To complete the proof, we must show that £ VT(X*,u*(')) = 0, then u (*)

steers xo to 0, Now

0= VT(\*,u*(-)) < Vr(l.u,(')) for all \ € A

T -
e r
0527 (T,00%, + | $(T,1)B(r)u,(r)dr | for all ) € L.

o
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Thus

(D.6) 0<' x(T,xo.u*(')) for all % € A

Since 0 is an interior point of the convex, compact set A, (D.6) implies

x(r,xo.u*(°)) = 0 and u,(-) is a steering control. 0

Acknowledgment. The authors wish to thank the reviewers for their thorough

reading of the paper. Their comments and suggestions led to many simplifications

in the proofs.
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CONTROLLING A SYSTEM TO A TARGET - PART l:

LINEAR SYSTEMS WITH ORIGIN AS TARGET

W. E. Schnil:cndorf1 B. R. Barmish

Mechanical Engineering Department Electrical Engineering Department

Northwestern University The University of Rochester

Evanston, Illinois 60201 Rochester, New York 14627
SUMMARY

Consider a system described by

x(t) = A(t) x(t) + B(t) u(r), tel0,=) (s)

where x(t)e¢ R" is the state and u(t)e R™ is the control. The instantaneous
control values are required to belong to a prescribed set ([ in 5. MO
will denote the set of functions from R {nto (i which are measurable oﬁ
"0,) and u(-) is admissible if u(-) ¢ M((J). The target set X is the
origin, {.e. X = (0},

We say that (S) is [r controllable to X from x if there exists an

admissible control which steers (S) from X, to X in finite time. If (S)
is (O controllable to X from every x, ¢ Rn. then we say that (S) is

globally 0 - controllable to X.

Necessary and sufficient conditions are given for global (= controlla-
bility to [0) as well as a neceasary and sufficient condition for the
existence of an admissible control which steers the system to the origin

from a specified initial state.

The global result does not require zero to be an interior point of (i
while the local result only assumes (i compact, not that it contains zero.
Furthermore, the controllability test involves a search over the finite
dimensional set [ rather than the infinite dimensional set M (7). Results

on determining a steering control are also discussed.

1
The research of this author was supported by AFOSR Grant No. 76-2923.
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CONTROLLING A SYSTEM TO A TARGET - PART 2:

NONLINEAR SYSTEMS WITH A GENERAL TARGET

B. R. Barmish W. E. Schnitendorfl

Electrical Engineering Department Mechanical Engineering Department

The University of Rochester Northwestern University

Rochester, New York 14627 Evanston, Illinois 60201
SUMMARY

In this part, our results are extended to the class of nonlinear

systems describaed by
k(t) = A(t) x(t) + £(t,u(t)), te(0,® (s"

We also allow the target X to be any closed, convex set. A necessary
condition and a sufficient condition for [ controllability to X from x
are given as well as a necessary condition and sufficient condition for
global -controllability to X.

Unlike the work of previous authors, we need not assume uniform

boundedness of the state transition matrix 2(o,t) or symmetricity and

positive {nvariance of X with respect to 2(o,t). Also, the assumptions
that Oe¢ and f(t,0) ® 0 are rot required. For systems where these

assumptions are satisfied the necessary condition and sufficient condition

reduce to one condition and this single condition {s equivalent to those
available in the literature. Furthermore, we exhibit systems which can
be deemed [ controllable or uncontrollable via our results but existing
theorems cannot be used to determine {f the system is (O-controllable or

O-uncontrollable.

lThc research of this author was supported by AFOSR Grant No. 76-2923,
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ANALYSIS OF DYNAMIC SYSTEMS
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A RESULT ON CONTROLLING A CONSTRAINED LINZAR SYSTEM TO A LINEAR SUBPAQI

W. L. Schattendor?

Oepartaent of Mechantcal Inginearing
Northwestern Universicy

Evanscton, L

Adstract

Ye consider the prodlem of steering the scace of & linear system to an affine target vhea the
coatrols are required to sacisfy sagnitude comstraints. A necessary and sufficient conditios ¢
exiscence of an admissidle control which steers the systesm %o the target from a specified lagzygl

3. R, Barwish

Departaent of Ilectrical

University of Rochester u“m"ﬂ
Rochescer, NY

sdatsstble
or the
coadi-

tion (s presented a8 vell as & necessary condition and & sufficilent condition for global controllantly
to the target. The output comcrolladtlicy problem and the special case of 4 poinc target are alse dis-

cussed.

1. DNTROOUCTION

Constder the linear systems
R(2) = A(2)x(t) « 3(2)u(r) (s)

vhere the stace x(2)€R™, cthe comcrol u(+)€ X end
A(+) and 3(-) are given continuous satrices of
sppropriste dimension. Ia this peper, the prodiem
scudied (s that of dectermining (f there exiscs an
sdaissidie control u(-) which steers the system to
4 target § givea dy

.
§ e x: lxeag! .

Sere L i3 & 'nown » x 3 satrix of rank » and & i
a given » vector. A comerol u(*) (s edmissidle
L2 () €EXN) where U (9 & prespecified compact
set Lo X® and N (1) denotes che set of functicas
fzom R lato O that are aeasuradie on (25.e).

de now define li~comtroliadtll to cargeet 0., Wighe
sut loss of gemeralily, ve hemceforth take t,= 0.

M. T™he lisear system ($) (s (-concroll-
plidttdEN
abie 33 4 from v, 1f, given the laltial condition
x(J) ® x,, there exiscs e comerol u(-)€ W () sueh
that the solution w(-) of (S) sacisfies Lx(T7) = &
for some T € T0.@), t.a. x(T) € 0. (S) ts globally
Segontrolledle 12 0 Lf Lt (s controliadle to
from every x, € %,

fxtensive vork has deen done 2a this prodiem vhen
the targe: (s the origin (L = I ,a=0); see, for
exampie "i-7]., Prodlems with targets ocher thes
8 © [0} Nave deen considered ta 8-11]. 1a 7103,
it s assumed that the target (s closed, convex,
svmmetric sdout O and sacisfies the positive
invariance condition

2(0,2)0 S 3(0,¢e")0 for all +¢' 2

vhere 2(2,t,) (s the state transition matrix,
Here our target i3 not required to satisfy these
assumstions. Neither do ve need 2o make the
assumption that 2(0,¢) is uaifovaly dounded, as (n
'C.!:; Furtherwore, ve do not require O ¢ & a8 ia
“3.105. 13 T11), & sufficient condiston ‘or cone
trolladiiicy et x, is given, dut giodal coneroll-
ebility is sot considered,

Ia the sent section, ve present & necessary and
sufficient condition for J-comcrolliadiiicy to §
from t,, vAile Sec. 111 presencs giobel f-comeroll-
ebtlity results, Some special cases and extensions
are discussed in Sec. V. Sec. V contains exampies
filustrating the resuits.

IX. CONTROLLABILITY FROM A FIXED INITIAL CONDITION

OQur conditica vill de given in terws of the scalar
function K: RO X R x RP < } defined by

R(x ,T&) = x 3" (T,00L'y - o'y
'r
. ‘oonp{-'l'(v)o'(?.')l.'a: ® €Cler . 1)

la the sequel, caly compact 0 will de coustidered.
This gusrantees that the incegrand (s a contisuous
funceiom of v and thus the (ntegral i3 (1) (s well
defined.

Theorem .. DPick any subset A of RP which contatias

C as an interior potnt. Thea (S) is T-gcontrollsele
fo ¥ from (x,,t)) if and oalv if

sta{k(x .Ta) = € 0] =0 (¢))
for some T € (e ,0).

Proof. Llet Aeix,) de the set of scates that cas de
sttained from x, at tise T, i.e.,
r . \
g(lo)- ‘a(r.cn-.- S(T.r )8 (v julr)de: u(-) !lm)‘r
- ~ -°
end define
( ?. \
'T(.o) =1y €ERr': yeilx, x ¢ L’(l.);
Siace A,(lo) is convex sod compact, so is l,(:').
Inttial state x, can Se steered to § at time T if
and only Lf point a and the set B=(x ) camamet de
strictly separated by a hyperpiase of, equivaleatly,
Lf and only !

, "
o'a € sup o'y b € M (x )} (&)

for all 7 ¢ 2°. Using the definttion of B (x),(3)
Yecomes

-'L 2(T,00x o ow“v;'u(t.v)l(v)-(v Yor: u(+) €RE)}
“e

-o2'a20 (O]

As & consequence of the seasurable selecticn theory
of 7T11], ve can comsute the suptemm and (ntegral
cperations (a (&) end ve have that & € B.(x) it
and oely if

K(x,.T2) 20 forail o€ . 4]

—

The research of the ‘irst suthor vas supported b
the ALr Force Office of Sciencifiec Nesearch voder
Grant 76-291) and that of che second author by tie
U.S. department of CLnergy.




Since R(x,,73) (s posicively homogeneous in 3,
Theorem | follows directly from (3). G
ta [13], o similar result is obcained for the sore
general prodlem vhers the descriding equatioas are
R(e) = A(e)x(e) » f(u(t),t) and the target L3 a
closed, coavex sec. However, a direct applicacion
of {13] to the prodlem constdered here leads ¢o &
sininizacion (8 (1) over R® racher thaa R°, Thus
the comditicn derived hers, which exploits the
affine scructure of the cargec, is easter co apoly.

III. GLOBAL CONTROLLABILITY

Before presesting our glodal results, ve aeed a
preliminary lemma.

* ess ..gwt! ‘cnce on for
1‘?:“?“:" -,\‘-:%‘:?_f‘—"'ﬁﬂ
E‘. Iy €A(L’), then v = L's for sowe g € R°,

equencly, taf{vu'x: x € tle taf{v'lx: x € 0}
“"a'g>-e.,

Mext, suppose laf(x'v: x ¢ 0} e 3 > - @ due
v € A(L'). Ten there (s an 3 vector v in the
aull spece of L sacisfytng

v'wegs 0 (8)

Wwe) n
tee % 0, .o, 1x"e 4 and fafine

R 2% a(sgn o)v, o=l 2,3,... (€ )]

From (8) and (7)

U.- 8 $))
k2
vizgevie . ale! (10)
Then
afflv'n: s € 0) € y'x o v'a'- alel ()

Since the right hand side of (ll) tends to = as
a<e, (nfflu'n: £ € §) o = vhich (s the concra-
dicvion ve seek. c

Our condition for glodal N-comcrolladtiliicy vill de
given in terms of tvo time functioms. Feor % € 2%,
define

.t
76 4 saxla'¥(r)e’ (0.0)%: w € Qlér

o

~infl2'2'(0,0)%: n€ 9 (§¥))

Wie) § ata(via' (e, 0L'9,0): 2 € &7,

Ta'(e,0)t'y! 1) ay
tem 1. ecessa sod 2 ot
%&r A%L—.ﬁ.ﬁmum
sup V(l'y,2) e s w (1)
t2d

1 € 2%, 340, !gr,“; at gond{tion
ﬁs_ﬁ‘:smmlmmfss 2" at
sSup (L) e e w 88 )}
t2d

(Mecessity) Proceeding by contradiction,
sunpose ‘S) (s glovally Seconcrallable 22 § dut

ANALYSIS OF DYNAMIC SYSTEMS

(14) (s oot satisfied, Then there exists a constant

4, 0<3 <e, and a0 T € 87, ¥ 4 0, such chac
V(L'T,t) €3 forall c20.,
Consequencly,
taf(x's'(0,)L'F: x €8) > = forallc2?0
and, from the lemma, there exiscs at esch t€{0.,»),
a vector g € RP such thac

2'(0,e)L'Y - L'a‘

lﬂa.:a‘) e l° 2 (:.O)L':t- ’é'

P‘
-] ow(-'l'(v)o'(:.v)x.'ot: ®» € Dldr
9

* -2 - inflo, Lx: x €0)
st -

.| sup(@'3'(r)e' (0,r)L'Y: » € Qldr
3

® <8 o V(L'Y,2) » - 8

Sence, K(X,,t3,) < J for all ¢t 2 0 and, from
Theoram |, this iaplies I, i3 soc conctrollable to
§ vhich coacradicts the assumpction of gloval (-
controllabilicy to O,

(Sufficiency) Again proceeding dy concradiction,
suppose (15) (s sacisfied duC che sysle= (s not
glodally (-concroliadble 2o §. Then there exists an
tattial condition X, vhich cannot de steered 3 9.
Ia sccordance vith heocem !, given any %[0.e),
theare L3 some aon-aro vector ¥, such thac

';3 (e,0)L LA M
oL
+  suple'3'ir)e'(e,e)l'r c w g Dlér €0 (16)

Using the Schwart: inequality, (t follows from (18)
that

ot
-" sup(@'s’ (r)a' (e,7)l'2 0 3 & Slee
-u:(c; tx: x€ 0} s ‘:'!'! le'(e,00L'y, un
for all % 0,®). Let
@
. Rl S— eL
t le'te, 0t

and ocbserve that '2'(e,00LF | o 1. Dividiag (IT)
oy Ta'(e,0)L'a ! and ustng tRe fact that 2'(t,r) *
2'(0,7)0'(2,0) ve obtain

t
sup{a’s’ (+)0'(0,1)8" (e, LT : = € Sler
‘o

~taf{x'2' (0,002 (e,0)LF : x € 0} 8 L
for all ¢ 2 0, This (s equivalent 22

1(3'(:.0)&7‘.” Ed ‘!0
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for all ¢t 2 0, This lmplies
v(e) "'! 11 -
for all ¢t 2 Q M va hgve concradicted the hno-

thesis that sup
ta 0

If the resules of (13] for nonlinear systems and
general target are applied to (§5) victh carget 9, 2
sistlar theorem resulcs., However, (¢ involves sa
a-vector rather tham 4 p vector . Furthermore,
the sufficlency portica requires that a linear
programming prodlem de soived at each t 2 0. Coem-
sequently, thac result (s sore difficult to apply
than Theorem I asbove.

d(t) e v @, Q

IV. SPECIAL CASES AND EXTENSIONS

I1n this section, ve discuss our results for some
special targets and also show how the results can
be extended o systams of the form

R(e) = A(e)x(e) + B(e)u(e) + g(r)

vhare g(*): R = 22 (s a contisuous function. (This
Ls a special case of the sore general system i(t) =
A(t)x(e) « f(u(t),t) scudted ta (13].) The outpuc
concrolladilicy prodlem L3 also examined.

Controlladbilicy: When el and o=0, ve have
Then K(x,,T2), givea la (1), decomes

P 4
I;O‘(?.Qb e swpie'dir)e'(T.rle: s €Ol
‘0

in this case, Theorem | scates that (S) (s (e-coun-
trollable 2o the origia ((-mull comtroliladle) ac
T, {f and ocaly (f there axists 4 T 2 0 and & set A
such thaet the sisimm value of the above l(la,fﬁ)
over all o € A\ (s tero, This (s idencical to the
result ia (6], Furcharwore, it cam de shown that
the glodal result of Theorem 1 for §s JA0) b
equivalent to the glodal result of U. for this
special case. [Finally, under the ctrumd
Sypothesis that I comtains tero, the necessary
condition snd sufficient conditicm of Theorem 1
serge (nto a siagle condition vhich s doth neces-
sery and sufficiemnt for glodal f-sull coutrolle-
DH&!"

J sup{e'3'*)9' (0,r0: @ €Qldr ¢ s @
]

and this s ideacical to the global result ta [6].

We say that system (5)
Lf, givea any pair
n’.: .zuon axists a time T2 0 end & comtrol
ul+)¢ X M) such that the soluticm of (3) lrom =,
satisfies x(T) @ x;. Aa obvious corollary of
NHeorem | »

‘ . HS.S.M" ** which cou-

Q.Q ﬁ.\u ‘”.LISB‘
= : : ﬁn.%. %’ﬁxl‘m
‘ o;.".‘.:) i3 8 tile g .xy
ﬂ.‘“(l.. a):a €A}~ 0

l.-.l

ﬁﬂ?&ﬁ“"”“‘ﬂmm

A result ow camplete (-concrollabilicy cam alse
e obtained via Theorem 1 and (9 presenced & o
second coreliary.

S AT W s " . s

Corollary 2. for comple
G-controlladtlicy is cthat for all et te

A necessary condition

sup rlxa'(o 0
tad

T
.
- "olw(- 3'(r)e'(0,r)N: o € m] ik

for all "€ »%, 04 0O,

gm Q-concrollabilie ﬁu%ﬁ!

sup mis I ,w(.'l'(v).’(:.vb: o € Q‘t
t20 <o

» . . . . " 1

X3 le'(e, )L’ = 1} ese,
Systems With s Forcing Functiom:
ts descrided by

k(e) = A(e)x(t) + B(e)u(e) + g(e) (€))
where g(+): R = &% (s coatinuous. For \@P, lec

Suppose the syseem

kx,,T) w x3' (1O - af)
r? <
.| r("l'(v) e g'(M)R (T rIL"\: @ € n}t
° N

Theorem | mpplies to the system (3) if ve replace -
R(x, ,T,4) by K(x,,T,A) (a the theorem. The proef

of :hu result (3 nearly identical to the proof of
Theorem | and (s omicted,

The global result of Theorem I also appiies to
systems of the fora (S) {f the {ategramds (3 (12)
and (1)) are replaced dy

b
sup (Ta'3'(r) « g'(+)%0" Q001" » €0}
and
sup Ift'l'(v) - (e (T,r)l'0: @ €0 ,
respectively.

1labild Suppose that

f(e) = A(e)x(e) + B(t)ult) + g(t)

y(e) e Cx(t)

where y(+) (s the output and C is & pxn satrix of

rank p. c«-nomu the output to a specified

potlat y u oqutnlcn to steering (S) to the

target ‘ o (x: Rence our results apply

u the output cuenlinuuy prodleam Lf we replace
L by C is our theorem.

V. DAOLS

Ve preseat tve examples. la the first, ve apply
T™eoren | and (3 the second, ve lovestigate global
controlladilicy via Theorem 1.

.B-.I.'_l- Couns ider the system
R (0) o m (0) & u(e) , Ry(e) = my(®)

for mry a (ucl-ﬂu Q=R), the system i3 sot com-
pletely concrolladble. HRowvever, it i3 scill possidle
te steer the system to some targets. Supeose
aelo, x‘.u.-(xo‘, a = | 5o that the target is
LI t(ll.lg) 1* 1), Por this prodiem

—
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c(of:m « 23 .t) . 230
R(z .T3) =
a(lmcr - 1) ’ s

-d uu{l(lo,?a) 2 €[-1,1]) =« 0 Lf md ocnly if

-t -T
¢ -1l g 5o S o
There is T € [0,#) such cthac this inequality is
satisfied (! and omly (f -l < %o s 1. Thus ve
conclude from Theorem ! chac (xyg,2y9) cam de

steered :onuuo-xyu-1<-m;x-‘
“'20"‘

Nov suppose § « {(x;,x,) : . 1l. Thea

T
R(x,.Ta) = a(zgpe’= 1)

L d @
- -u‘l(l..ta) :a €0-1,11) « 0 (¢ md caly (2
30 ¢"'. There (s a T € [0,@) such that chis
equacion (s sacisfied {f and culy 1f 0 < x99 ) 8
Seoce, the system cam de sceered o this target (!
and caly t!-.<l.1°<-.‘3<1.2°(

Lxawie 2. Ve comsider the doudle integrator
t, (e) e (¥}
£, (e) = u(e)

and the concrol comscraiat sec (s O » [-1,1], e
Suppose che arget s .o L & x, so thac L (-t,12
ad e=i. For tiis prodies

o8
T(L'y.0) o supiairella : w€l-1,1])dr
-]

“af( (oxe 2 e e

- Yc!(i: - ‘\; ~af{(zgt & Vo : x.€ )

Stace taf{(x3¢ « Lo : 1) « = for all o # 0,
P(L'y,t) = s @ for all o ¥ O and the aecessary coa-
dizion for glodal coacrollabilicy to § (s sacisfied.

- ".. .1. 11

Next, we check the sufficient comdizice.
ot
(@' (e, 0)L'2,2) o | ! lealee{dr - o

YO!(toog-a. 0sest

2
lol(§= o1-¢) -2 . €2

T™hea, for 0 g sl ,

2,

\
V(e) « uin I_‘a!(t - ;-/‘ -3 or‘.l O(Iot)r:: - “‘
r-llz

. 2
, \
RO (e-4-1)
for ¢t 2 |,

2 s
4
Wit) = sia '1a!<¥ - ‘.g)- ?: 't‘ .(‘.‘)r: - l'r

-5, .2
r . 3 ~ \
.r‘l *{i-2) ‘l \*“ l’,'
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Slace 3-_ d(t) @ « @, che yufficienc conditicm (3
saciatied dnd this asystes (s glodbally C-concrolilable
co 0.
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